A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles
Abstract
:1. Introduction
2. Theoretical Methods
3. Results and Discussion
3.1. Surface-Enhanced Absorption of Model 1
3.2. Surface Enhanced Absorption of Model 2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Wang, X. Ab initio study of photoisomerization mechanisms of push-pull p,p′-disubstituted azobenzene derivatives on S-1 excited state. J. Mol. Struct. THEOCHEM 2007, 806, 179–186. [Google Scholar] [CrossRef]
- Hamelmann, F.; Heinzmann, U.; Siemeling, U.; Bretthauer, F.; Vor der Brüggen, J. Light-Stimulated Switching of Azobenzene-Containing Self-Assembled Monolayers. Appl. Surf. Sci. 2004, 222, 1–5. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Collins, S.S.E.; Gallagher, M.J.; Bhattacharjee, U.; Zhang, R.; Chow, T.H.; Ahmadiv, A.; Ostovar, B.; Al-Zubeidi, A.; Wang, J.; et al. Single-Particle Emission Spectroscopy Resolves d-Hole Relaxation in Copper Nanocubes. ACS Energy Lett. 2019, 4, 2458–2465. [Google Scholar] [CrossRef]
- Ostovar, B.; Cai, Y.Y.; Tauzin, L.J.; Lee, S.A.; Ahmadivand, A.; Zhang, R.; Nordlander, P.; Link, S. Increased Intraband Transition in Smaller Gold Nanorods Enhance Light Emission. ACS Nano 2020, 14, 15757–15765. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Jung, U.; Gusak, V.; Ulrich, S.; Holz, M.; Herges, R.; Langhammer, C.; Magnussen, O. Localized Surface Plasmon Resonance Investigations of Photoswitching in Azobenzene-Functionalized Self-Assembled Monolayers On Au. Langmuir 2013, 29, 10693–10699. [Google Scholar] [CrossRef]
- Jung, U.; Filinova, O.; Kuhn, S.; Zargarani, D.; Bornholdt, C.; Herges, R.; Mangussen, O. Photoswitching Behavior of Azobenzene-Containing Alkanethiol Self-Assembled Monalayers on Au Surfaces. Langmuir 2010, 26, 13913–13923. [Google Scholar] [CrossRef]
- Song, H.; Jing, C.; Ma, W.; Xie, T.; Long, Y.T. Reversible Photoisomerization of Azobenzene Molecules on a Single Gold Nanoparticle Surface. Chem. Commun. 2016, 52, 2984–2987. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.Q.; Wang, X.; Shao, F.; Hegner, M.; Zenobi, R. Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzene-Thiol Self-Assembled Monolayer by Tip-Enhanced Raman Spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 1025–1029. [Google Scholar] [CrossRef]
- Kunfi, A.; Vlocsko, R.B.; Keresztes, Z.; Mohai, M.; Bertoti, I.; Abraham, A.; Kiss, E.; London, G. Photoswitchable Macroscopic Solid Surfaces Based On Azobenzene-Functionalized Polydopamine/Gold Nanoparticle Composite Materials: Formation, Isomerization and Ligand Exchange. ChemPlusChem 2020, 85, 797–805. [Google Scholar] [CrossRef]
- Fast, E.; Schlimm, A.; Lautenschlager, I.; Clausen, K.U.; Strunskus, T.; Spormann, C.; Lindhorst, T.K.; Tuczek, F. Improving the Switching Capacity of Glyco-Self-Assembled Monolayers on Au(111). Chem. Eur. J. 2019, 26, 485–501. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.W.; Zhang, J.W.; Xing, F.S.; Cheng, C.C.; Wu, Y.W.; Huang, C.J. Plasmon-enhanced and controllable synthesis of azobenzene and hydrazobenzene using Au/TiO2 composite. Appl. Surf. Sci. 2020, 500, 144214. [Google Scholar] [CrossRef]
- Xie, Z.; Duan, S.; Wang, C.K.; Luo, Y. Finding the true pathway for reversible isomerization of a single azobenzene molecule tumbling on Au(111) surface. Nanoscale 2020, 12, 10474–10479. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.K.; Blodgett, K.N.; Muhoberac, B.B.; Johnson, M.A.; Smith, K.A.; Saradar, R. Ultrasensitive Photoreversible Molecular Sensors of Azobenzene-Functionalized Plasmonic Nanoantennas. Nano Lett. 2014, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Link, S.; Halas, N.J. Nano-Optics from Sensing to Waveguiding. Nat. Photonics 2007, 1, 641–648. [Google Scholar] [CrossRef]
- Gahl, C.; Schmidt, R.; Brete, D.; Paarmann, S.; Weinelt, M. Charge-transfer dynamics in azobenzene alkanethoiolate self-assembled monolayers on gold. Surf. Sci. 2015, 643, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.K.; Li, X.; Li, Y.; Drew, K.L.M.; Palafox-Hernandez, J.P.; Tang, Z.; Baev, A.; Kuzmin, A.N.; Knecht, M.R.; Walsh, T.R.; et al. Plasmon-enhanced two-photon-induced isomerization for highly-localized light-based actuation of inorganic/organic interfaces. Nanoscale 2016, 8, 4194–4202. [Google Scholar] [CrossRef]
- Wright, L.B.; Rodger, P.M.; Corni, S.; Walsh, T.R. GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9, 1616–1630. [Google Scholar] [CrossRef]
- Andreussi, O.; Biancardi, A.; Corni, S.; Mennucci, B. Plasmon-Controlled Light-Harvesting: Design Rules for Biohybrid Devices via Multiscale Modeling. Nano Lett. 2013, 13, 4475–4484. [Google Scholar] [CrossRef]
- Smith, H.T.; Karam, T.E.; Haber, L.H.; Lopata, K. Capturing Plasmon-Molecule Dynamics in Dye Monolayers on Metal Nanoparticles Using Classical Electrodynamics with Quantum Embedding. J. Phys. Chem. C 2017, 121, 16932–16942. [Google Scholar] [CrossRef] [Green Version]
- Fregoni, J.; Granucci, G.; Coccia, E.; Persico, M.; Corni, S. Manipulating Azobenzene Photoisomerization Through Strong Light-Molecule Coupling. Nat. Commun. 2018, 9, 4688. [Google Scholar] [CrossRef]
- Mennucci, B.; Corni, S. Multiscale Modelling of Photoinduced Processes in Composite Systems. Nat. Rev. Chem. 2019, 3, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Morton, S.M.; Jensen, L. A discrete ineraction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption. J. Chem. Phys. 2011, 135, 134103. [Google Scholar] [CrossRef]
- Gao, Y.; Neuhauser, D. Dynamical quantum-electrodynamics embedding: Combining timedependent density functional theory and the near-field method. J. Chem. Phys. 2012, 137, 074113. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.N.; McMahon, J.M.; Ratner, M.A.; Schatz, G.C. Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: A RT-TDDFT/FDTD Approach. J. Phys. Chem. C 2010, 114, 14384–14392. [Google Scholar] [CrossRef]
- Yam, C.; Meng, L.; Chen, G.; Chen, Q.; Wong, N. Multiscale Quantum Mechanics/Electromagnetics Simulation for Electronic Devices. Phys. Chem. Chem. Phys. 2011, 13, 14365–14369. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yam, C.; Koo, S.; Chen, Q.; Wong, N.; Chen, G. Dynamic Multiscale Quantum Mechanics/Electromagnetics Simulation Method. J. Chem. Theory Comput. 2012, 8, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Payton, J.L.; Morton, S.M.; Moore, J.E.; Jensen, L. A Hybrid Atomistic Electrodynamics-Quantum Mechanical Approach for Simulating Surface-Enhanced Raman Scattering. Acc. Chem. Res. 2013, 47, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Purcell, T.A.R.; Seideman, T. Modeling the Chiral Imprinting Response of Oriented Dipole Moments on Metal Nanostructures. ACS Photonics 2018, 5, 4801–4809. [Google Scholar] [CrossRef]
- Nascimento, D.R.; Prince, A.E.D. Modeling Molecule-Plasmon Interactions Using Quantized Radiation Fields within Time-Dependent Electronic Structure Theory. J. Chem. Phys. 2015, 143, 214104. [Google Scholar] [CrossRef]
- Luk, H.L.; Feist, J.; Toppari, J.J.; Groenhof, G. Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. J. Chem. Theory Comput. 2017, 13, 4324–4335. [Google Scholar] [CrossRef] [Green Version]
- Vendrell, O. Coherent Dynamics in Cavity Femtochemistry: Application of the Multi-Configuration Time-Dependent Hartree Method. Chem. Phys. 2018, 509, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Neuman, T.; Esteban, R.; Casanova, D.; García-Vidal, F.J.; Aizpurua, J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Lett. 2018, 18, 2358–2364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Govorov, A.O.; Bryant, G.W. Semiconductor-Metal Nanoparticle Molecules: Hybrid Excitons and Non-linear Fano effect. Phys. Rev. Lett. 2006, 97, 146804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liang, W.Z. Theoretical Investigation of Resonance Raman Scattering of Dye Molecules Absorbed on Semiconductor Surfaces. J. Chem. Phys. 2011, 135, 044108. [Google Scholar] [CrossRef] [PubMed]
- Zelinskyy, Y.; Zhang, Y.; May, V. Supramolecular Complex Coupled to a Metal Nanoparticle: Computational Studies on the Optical Absorption. J. Phys. Chem. A 2012, 116, 11330–11340. [Google Scholar] [CrossRef] [PubMed]
- Govorov, A.O.; Zhang, H.; Gun’ko, Y.K. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules. J. Phys. Chem. C 2013, 117, 16616–16631. [Google Scholar] [CrossRef]
- Ye, C.X.; Zhao, Y.; Liang, W.Z. Resonance Raman Spectra of Organic Molecules Absorbed on Inorganic Semiconducting Surfaces: Contribution From Both Localized Intramolecular Excitation and Intermolecular Charge Transfer Excitation. J. Chem. Phys. 2015, 143, 154105. [Google Scholar] [CrossRef]
- Wang, L.X.; May, V. Control of Intermolecular Electronic Excitation Energy Transfer: Application of Metal Nanoparticle Plasmons. J. Phys. Chem. C 2017, 121, 13428–13433. [Google Scholar] [CrossRef]
- You, X.Y.; Ramakrishna, S.; Seideman, T. Plasmon-Mediated Absorption and Photocurrent Spectra in Sensitized Solar Cells. ACS Photonics 2017, 4, 1178–1187. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Y.; Liang, W.Z. Collaborative effect of plasmon-induced resonance energy and electron transfer on the interfacial electron injection dynamics of dye-sensitized solar cell. J. Chem. Phys. 2019, 151, 044702. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Y.; Liang, W.Z. Joint Effects of Exciton-Exciton and Exciton-Photon Couplings on the Singlet Fission Dynamics in Organic Aggregates. J. Phys. Chem. C 2021, 125, 1654–1664. [Google Scholar] [CrossRef]
- Faucheaux, J.A.; Fu, J.Y.; Jain, P.K. Unified Theoretical Framework for Realizing Diverse Regimes of Strong Coupling between Plasmons and Electronic Transitions. J. Phys. Chem. C 2014, 118, 2710–2717. [Google Scholar] [CrossRef]
- Wu, C.H.; Khanikaev, A.B.; Adato, R.; Arju, N.; Yanik, A.A.; Altug, H.; Shvets, G. Fano-Resonant Asymmetric Metamaterials for Ultrasensitive Spectroscopy and Identification of Molecular Monolayers. Nat. Mater. 2011, 11, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Adato, R.; Artar, A.; Erramilli, S.; Altug, H. Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems. Nano Lett. 2013, 13, 2584–2591. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Liang, W.Z. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: A mixed TDDFT/FDTD investigation. Phys. Chem. Chem. Phys. 2015, 17, 16835–16845. [Google Scholar] [CrossRef]
- Sun, J.; Ding, Z.L.; Yu, Y.Q.; Liang, W.Z. Plasmon-enhanced high order harmonic generation of open-ended finite-sized carbon nanotubes: The effects of incident field’s intensity and frequeny and the interference between the incident and scattered fields. J. Chem. Phys. 2020, 152, 224708. [Google Scholar] [CrossRef]
- Sun, J.; Ding, Z.L.; Yu, Y.Q.; Liang, W.Z. Nonlinear features of Fano resonance: A QM/EM study. Phys. Chem. Chem. Phys. 2021, 23, 15994. [Google Scholar] [CrossRef] [PubMed]
- Yabana, K.; Bertsch, G.F. Time-Dependent Local-Density Approximation in real time. Phys. Rev. B 1996, 54, 4484–4487. [Google Scholar] [CrossRef]
- Yam, C.Y.; Yokojima, S.; Chen, G.H. Linear-Scaling Time-Dependent Density-Functional Theory. Phys. Rev. B 2003, 68, 153105. [Google Scholar] [CrossRef] [Green Version]
- Yam, C.Y.; Yokojima, S.; Chen, G.H. Localized-Density-Matrix Implementation of Time-Dependent Density-Functional Theory. J. Chem. Phys. 2003, 119, 8794. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Marques, M.A.L.; Rubio, A. Propagators for the Time-Dependent Kohn-Sham equations. J. Chem. Phys. 2004, 121, 3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabana, K.; Nakatsukasa, T.; Iwata, J.-I.; Bertsch, G.F. Real-Time, Real-Space Implementation of the Linear Response Time-Dependent Density-Functional Theory. Phys. Status Solidi B 2006, 243, 1121. [Google Scholar] [CrossRef]
- Cheng, C.L.; Evans, J.S.; Voorhis, T.V. Simulating Molecular Conductance Using Real-Time Density Functional Theory. Phys. Rev. B 2006, 74, 155112. [Google Scholar] [CrossRef]
- Pi, M.; Ancilotto, F.; Lipparini, E.; Mayol, R. Magneto-Optics of Three-Dimensional Quantum Dots: A Real Time, Time-Dependent Local Spin-Density Approach. Phys. E 2004, 24, 297–307. [Google Scholar] [CrossRef]
- Miller, E.K. Time-Domain Modeling in Electromagetics. J. Electromagn. Waves Appl. 1994, 8, 1125. [Google Scholar] [CrossRef]
- Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C.A.; Andrade, X.; Lorenzen, F.; Marques, M.; Gross, E.; Rubio, A. Octopus: A tool for the application of time-dependent density functional theory. Phys. Stat. Sol. B 2006, 243, 2465–2488. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.M.; Wang, Y.; Sherry, L.J.; Van Duyne, R.P.; Marks, L.D.; Gray, S.K.; Schatz, G.C. Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes. J. Phys. Chem. C 2009, 113, 2731–2735. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nature 2017, 11, 543. [Google Scholar] [CrossRef]
- Fofang, N.T.; Park, T.H.; Neumann, O.; Mirin, N.A.; Nordlander, P.; Halas, N.J. Plexcitonic Nanoparticles: Plasmon-Exciton Coupling in Nanoshell-J-Aggregate Complexes. Nano Lett. 2008, 8, 3481–3487. [Google Scholar] [CrossRef]
- Fofang, N.T.; Grady, N.K.; Fan, Z.Y.; Govorov, A.O.; Halas, N.J. Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate-Au Nanoshell Complex Provides a Mechanism for Nonlinearity. Nano Lett. 2011, 11, 1556–1560. [Google Scholar] [CrossRef] [PubMed]
- Manjavacas, A.; Abajo, F.J.G.; Nordlander, P. Quantum Plexcitonics: Strongly Interacting Plasmons and Excitons. Nano Lett. 2011, 11, 2318. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.W.; Wang, H.Y.; Jiang, Y.; Chen, Q.D.; Ueno, K.; Wang, W.Q.; Misawa, H.; Sun, H.B. Hybrid-State Dynamics of Gold Nanorods/Dye J-Aggregates under Strong Coupling. Angew. Chem. Int. Ed. 2011, 50, 7824. [Google Scholar] [CrossRef] [PubMed]
- Eizner, E.; Avayu, O.; Ditcovski, R.; Ellenbogen, T. Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons. Nano Lett. 2015, 15, 6215. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Huck, C.; Weber, K.; Pucci, A.; Giessen, H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 2017, 117, 5110–5145. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.G.; Cai, W.B.; Wan, L.J.; Osawa, M. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy. J. Phys. Chem. B 1999, 103, 2460–2466. [Google Scholar] [CrossRef]
- Krauth, O.; Fahsold, G.; Magg, N.; Pucci, A. Anomalous infrared transmission of adsorbates on ultrathin metal films: Fano effect near the percolation threshold. J. Chem. Phys. 2000, 113, 6330. [Google Scholar] [CrossRef]
- Priebe, A.; Sinther, M.; Fahsold, G.; Pucci, A. The correlation between film thickness and adsorbate line shape in surface enhanced infrared absorption. J. Chem. Phys. 2003, 119, 4887. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Ding, Z.; Yu, Y.; Xie, C. A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles. Crystals 2022, 12, 248. https://doi.org/10.3390/cryst12020248
Sun J, Ding Z, Yu Y, Xie C. A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles. Crystals. 2022; 12(2):248. https://doi.org/10.3390/cryst12020248
Chicago/Turabian StyleSun, Jin, Zongling Ding, Yuanqin Yu, and Chuanmei Xie. 2022. "A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles" Crystals 12, no. 2: 248. https://doi.org/10.3390/cryst12020248
APA StyleSun, J., Ding, Z., Yu, Y., & Xie, C. (2022). A Theoretical Investigation about Photoswitching of Azobenzene Adsorbed on Ag Nanoparticles. Crystals, 12(2), 248. https://doi.org/10.3390/cryst12020248