Are Heavy Fermion Strange Metals Planckian?
Abstract
:1. Introduction
2. Simple Models for Strongly Correlated Electron Systems
3. Strange Metal Phase Diagrams
4. Fermi Liquid Behavior near Quantum Critical Points
5. Strange Metal Behavior and Planckian Dissipation
Compound | A (cm/K) | (J/molK) | n (nm) | (cm/K) | |
---|---|---|---|---|---|
CeIrIn | – | 0.65 [76] | 183 | 2.5 | 8.8 [76] |
CePdSi | 5–120 [43] | 0.707–3.46 | 136–665 | 1.7 | 18.3 [43] |
CeCoIn () | 12.4–28.3 [67] | 1.11–1.68 | 310–470 | 12.4 | 0.8 [77] |
CeCoIn () | 1.72–11.5 [67] | 0.414–1.07 | 116–300 | 12.4 | 0.8 [77] |
CeCoIn () | 1.72–11.5 [67] | 0.414–1.07 | 116–300 | 12.4 | 2.475 [77] |
CeRuSi | 0.1–3.4 [56] | 0.1–0.583 | 53–310 | 11.6 | 0.91 [41] |
UPt | – | 0.425–0.625 [78] | 223–329 | 21.4 | 1.1 [10] |
YbAgGe () | – | 0.87–1.4 [79] | 1300–2100 | 1.6 | 27–59 [80] |
YbRhSi | 1.7–33.8 [68] | 0.41–1.85 | 250–1100 | 10 | 1.83 [68] |
6. Strange Metal Behavior and the Mott–Ioffe–Regel Limit
7. Strange Metal Behavior and Fermi Surface Jumps
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharjee, S.M.; Mj, M.; Bandyopadhyay, A. Topology and Condensed Matter Physics; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Landau, L.D. On the theory of phase transitions. I. Phys. Z. Soviet. 1937, 11, 26. Available online: http://cds.cern.ch/record/480039 (accessed on 8 February 2022). [CrossRef]
- Wilson, K.G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 1975, 47, 773–840. [Google Scholar] [CrossRef]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Si, Q.; Rabello, S.; Ingersent, K.; Smith, J. Locally critical quantum phase transitions in strongly correlated metals. Nature 2001, 413, 804. [Google Scholar] [CrossRef] [PubMed]
- Coleman, P.; Pépin, C.; Si, Q.; Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 2001, 13, R723–R738. [Google Scholar] [CrossRef]
- Senthil, T.; Vishwanath, A.; Balents, L.; Sachdev, S.; Fisher, M. Deconfined quantum critical points. Science 2004, 303, 1490–1494. [Google Scholar] [CrossRef]
- Senthil, T.; Balents, L.; Sachdev, S.; Vishwanath, A.; Fisher, M.P.A. Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm. Phys. Rev. B 2004, 70, 144407. [Google Scholar] [CrossRef]
- Schröder, A.; Aeppli, G.; Coldea, R.; Adams, M.; Stockert, O.; v. Löhneysen, H.; Bucher, E.; Ramazashvili, R.; Coleman, P. Onset of antiferromagnetism in heavy-fermion metals. Nature 2000, 407, 351–355. [Google Scholar] [CrossRef]
- Bruin, J.A.N.; Sakai, H.; Perry, R.S.; Mackenzie, A.P. Similarity of scattering rates in metals showing T-linear resistivity. Science 2013, 339, 804. [Google Scholar] [CrossRef]
- Legros, A.; Benhabib, S.; Tabis, W.; Laliberté, F.; Dion, M.; Lizaire, M.; Vignolle, B.; Vignolles, D.; Raffy, H.; Li, Z.Z.; et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 2019, 15, 142. [Google Scholar] [CrossRef]
- Hewson, A.C. The Kondo Problem to Heavy Fermions; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Coleman, P. Introduction to Many-Body Physics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Khodel, V.A.; Shaginyan, V.R. Superfluidity in system with fermion condensate. JETP Lett. 1990, 51, 553. [Google Scholar]
- Volovik, G.E. Flat band and Planckian metal. JETP Lett. 2019, 110, 352–353. [Google Scholar] [CrossRef]
- Shaginyan, V.R.; Amusia, M.Y.; Msezane, A.Z.; Stephanovich, V.A.; Japaridze, G.S.; Artamonov, S.A. Fermion condensation, T-linear resistivity, and Planckian limit. JETP Lett. 2019, 110, 290–295. [Google Scholar] [CrossRef]
- Bistritzer, R.; MacDonald, A.H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef]
- Derzhko, O.; Richter, J.; Maksymenko, M. Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons. Int. J. Mod. Phys. B 2015, 29, 1530007. [Google Scholar] [CrossRef]
- Leykam, D.; Andreanov, A.; Flach, S. Artificial flat band systems: From lattice models to experiments. Adv. Phys. X 2018, 3, 1473052. [Google Scholar] [CrossRef]
- Kang, M.; Ye, L.; Fang, S.; You, J.S.; Levitan, A.; Han, M.; Facio, J.I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 2020, 19, 163. [Google Scholar] [CrossRef]
- Ye, L.; Fang, S.; Kang, M.G.; Kaufmann, J.; Lee, Y.; Denlinger, J.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Kaxiras, E.; et al. A flat band-induced correlated kagome metal. arXiv 2021, arXiv:2106.10824. [Google Scholar]
- Stewart, G.R. Heavy-fermion systems. Rev. Mod. Phys. 1984, 56, 755. [Google Scholar] [CrossRef]
- Stewart, G.R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 2001, 73, 797. [Google Scholar] [CrossRef]
- v. Löhneysen, H.; Rosch, A.; Vojta, M.; Wölfle, P. Fermi-liquid instabilities at magnetic quantum critical points. Rev. Mod. Phys. 2007, 79, 1015. [Google Scholar] [CrossRef]
- Ramires, A.; Lado, J.L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 2021, 127, 026401. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.D.; Bernevig, B.A. MATBG as topological heavy fermion: I. Exact mapping and correlated insulators. arXiv 2021, arXiv:2111.05865. [Google Scholar]
- Kadowaki, K.; Woods, S.B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 1986, 58, 507–509. [Google Scholar] [CrossRef]
- Tsujii, N.; Kontani, H.; Yoshimura, K. Universality in heavy fermion systems with general degeneracy. Phys. Rev. Lett. 2005, 94, 057201. [Google Scholar] [CrossRef]
- Jacko, A.C.; Fjaerestad, J.O.; Powell, B.J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 2009, 5, 422. [Google Scholar] [CrossRef]
- Kirchner, S.; Paschen, S.; Chen, Q.; Wirth, S.; Feng, D.; Thompson, J.D.; Si, Q. Colloquium: Heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 2020, 92, 011002. [Google Scholar] [CrossRef]
- Paschen, S.; Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 2021, 3, 9–26. [Google Scholar] [CrossRef]
- Hertz, J.A. Quantum critical phenomena. Phys. Rev. B 1976, 14, 1165. [Google Scholar] [CrossRef]
- Millis, A.J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 1993, 48, 7183. [Google Scholar] [CrossRef]
- Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism; Springer: Berlin, Germany, 1985; Volume 56, pp. 44–81. [Google Scholar] [CrossRef]
- Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 1999, 82, 4280. [Google Scholar] [CrossRef]
- Smith, R.P.; Sutherland, M.; Lonzarich, G.G.; Saxena, S.S.; Kimura, N.; Takashima, S.; Nohara, M.; Takagi, H. Marginal breakdown of the Fermi-liquid state on the border of metallic ferromagnetism. Nature 2008, 455, 1220–1223. [Google Scholar] [CrossRef]
- Hlubina, R.; Rice, T.M. Resistivity as a function of temperature for models with hot spots on the Fermi surface. Phys. Rev. B 1995, 51, 9253–9260. [Google Scholar] [CrossRef] [PubMed]
- Nagaosa, N. RVB vs Fermi liquid picture of high-Tc superconductors. J. Phys. Chem. Solids 1992, 53, 1493–1498. [Google Scholar] [CrossRef]
- Custers, J.; Gegenwart, P.; Wilhelm, H.; Neumaier, K.; Tokiwa, Y.; Trovarelli, O.; Geibel, C.; Steglich, F.; Pépin, C.; Coleman, P. The break-up of heavy electrons at a quantum critical point. Nature 2003, 424, 524. [Google Scholar] [CrossRef] [PubMed]
- Daou, R.; Bergemann, C.; Julian, S.R. Continuous evolution of the Fermi surface of CeRu2Si2 across the metamagnetic transition. Phys. Rev. Lett. 2006, 96, 026401. [Google Scholar] [CrossRef]
- Park, T.; Sidorov, V.A.; Ronning, F.; Zhu, J.X.; Tokiwa, Y.; Lee, H.; Bauer, E.D.; Movshovich, R.; Sarrao, J.L.; Thompson, J.D. Isotropic quantum scattering and unconventional superconductivity. Nature 2008, 456, 366–368. [Google Scholar] [CrossRef]
- Martelli, V.; Cai, A.; Nica, E.M.; Taupin, M.; Prokofiev, A.; Liu, C.C.; Lai, H.H.; Yu, R.; Ingersent, K.; Küchler, R.; et al. Sequential localization of a complex electron fluid. Proc. Natl. Acad. Sci. USA 2019, 116, 17701. [Google Scholar] [CrossRef]
- Grigera, S.A.; Perry, R.S.; Schofield, A.J.; Chiao, M.; Julian, S.R.; Lonzarich, G.G.; Ikeda, S.I.; Maeno, Y.; Millis, A.J.; Mackenzie, A.P. Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7. Science 2001, 294, 329–332. [Google Scholar] [CrossRef]
- Cooper, R.A.; Wang, Y.; Vignolle, B.; Lipscombe, O.J.; Hayden, S.M.; Tanabe, Y.; Adachi, T.; Koike, Y.; Nohara, M.; Takagi, H.; et al. Anomalous criticality in the electrical resistivity of La2-xSrxCuO4. Science 2009, 323, 603–607. [Google Scholar] [CrossRef]
- Hashimoto, K.; Cho, K.; Shibauchi, T.; Kasahara, S.; Mizukami, Y.; Katsumata, R.; Tsuruhara, Y.; Terashima, T.; Ikeda, H.; Tanatar, M.A.; et al. A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1-xPx)2. Science 2012, 336, 1554. [Google Scholar] [CrossRef] [PubMed]
- Jaoui, A.; Das, I.; Battista, G.D.; Díez-Mérida, J.; Lu, X.; Watanabe, K.; Taniguchi, T.; Ishizuka, H.; Levitov, L.; Efetov, D.K. Quantum-critical continuum in magic-angle twisted bilayer graphene. arXiv 2021, arXiv:2108.07753. [Google Scholar]
- Trovarelli, O.; Geibel, C.; Mederle, S.; Langhammer, C.; Grosche, F.M.; Gegenwart, P.; Lang, M.; Sparn, G.; Steglich, F. YbRh2Si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 2000, 85, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Sidorenko, A.; Taupin, M.; Knebel, G.; Lapertot, G.; Schuberth, E.; Paschen, S. Superconductivity in an extreme strange metal. Nat. Commun. 2021, 12, 4341. [Google Scholar] [CrossRef]
- Petrovic, C.; Pagliuso, P.G.; Hundley, M.F.; Movshovich, R.; Sarrao, J.L.; Thompson, J.D.; Fisk, Z.; Monthoux, P. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 2001, 13, L337–L342. [Google Scholar] [CrossRef]
- Paglione, J.; Tanatar, M.A.; Hawthorn, D.G.; Boaknin, E.; Hill, R.W.; Ronning, F.; Sutherland, M.; Taillefer, L.; Petrovic, C.; Canfield, P.C. Field-induced quantum critical point in CeCoIn5. Phys. Rev. Lett. 2003, 91, 246405. [Google Scholar] [CrossRef]
- Bianchi, A.; Movshovich, R.; Vekhter, I.; Pagliuso, P.G.; Sarrao, J.L. Avoided antiferromagnetic order and quantum critical point in CeCoIn5. Phys. Rev. Lett. 2003, 91, 257001. [Google Scholar] [CrossRef]
- Sidorov, V.A.; Nicklas, M.; Pagliuso, P.G.; Sarrao, J.L.; Bang, Y.; Balatsky, A.V.; Thompson, J.D. Superconductivity and quantum criticality in CeCoIn5. Phys. Rev. Lett. 2002, 89, 157004. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Bauer, E.D.; Gegenwart, P. Zero-field quantum critical point in CeCoIn5. Phys. Rev. Lett. 2013, 111, 107003. [Google Scholar] [CrossRef]
- Pham, L.D.; Park, T.; Maquilon, S.; Thompson, J.D.; Fisk, Z. Reversible tuning of the heavy-fermion ground state in CeCoIn5. Phys. Rev. Lett. 2006, 97, 056404. [Google Scholar] [CrossRef]
- Boukahil, M.; Pourret, A.; Knebel, G.; Aoki, D.; Ōnuki, Y.; Flouquet, J. Lifshitz transition and metamagnetism: Thermoelectric studies of CeRu2Si2. Phys. Rev. B 2014, 90, 075127. [Google Scholar] [CrossRef]
- Mathur, N.; Grosche, F.; Julian, S.; Walker, I.; Freye, D.; Haselwimmer, R.; Lonzarich, G. Magnetically mediated superconductivity in heavy fermion compounds. Nature 1998, 394, 39–43. [Google Scholar] [CrossRef]
- Gegenwart, P.; Kromer, F.; Lang, M.; Sparn, G.; Geibel, C.; Steglich, F. Non-Fermi-liquid effects at ambient pressure in a stoichiometric heavy-fermion compound with very low disorder: CeNi2Ge2. Phys. Rev. Lett. 1999, 82, 1293–1296. [Google Scholar] [CrossRef]
- Knebel, G.; Braithwaite, D.; Canfield, P.C.; Lapertot, G.; Flouquet, J. Electronic properties of CeIn3 under high pressure near the quantum critical point. Phys. Rev. B 2001, 65, 024425. [Google Scholar] [CrossRef]
- Nakatsuji, S.; Kuga, K.; Machida, Y.; Tayama, T.; Sakakibara, T.; Karaki, Y.; Ishimoto, H.; Yonezawa, S.; Maeno, Y.; Pearson, E.; et al. Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4. Nat. Phys. 2008, 4, 603–607. [Google Scholar] [CrossRef]
- Grissonnanche, G.; Fang, Y.; Legros, A.; Verret, S.; Laliberté, F.; Collignon, C.; Zhou, J.; Graf, D.; Goddard, P.A.; Taillefer, L.; et al. Linear-in temperature resistivity from an isotropic Planckian scattering rate. Nature 2021, 595, 667–672. [Google Scholar] [CrossRef]
- Zaanen, J. Why the temperature is high. Nature 2004, 430, 512–513. [Google Scholar] [CrossRef]
- Hartnoll, S.A.; Lucas, A.; Sachdev, S. Holographic quantum matter. arXiv 2016, arXiv:1612.07324. [Google Scholar]
- Hartnoll, S.A.; Mackenzie, A.P. Planckian dissipation in metals. arXiv 2021, arXiv:2107.07802. [Google Scholar]
- Chowdhury, D.; Georges, A.; Parcollet, O.; Sachdev, S. Sachdev-Ye-Kitaev models and beyond: A window into non-Fermi liquids. arXiv 2021, arXiv:2109.05037. [Google Scholar]
- Mercure, J.F.; Rost, A.W.; O’Farrell, E.C.T.; Goh, S.K.; Perry, R.S.; Sutherland, M.L.; Grigera, S.A.; Borzi, R.A.; Gegenwart, P.; Gibbs, A.S.; et al. Quantum oscillations near the metamagnetic transition in Sr3Ru2O7. Phys. Rev. B 2010, 81, 235103. [Google Scholar] [CrossRef]
- Ronning, F.; Capan, C.; Bianchi, A.; Movshovich, R.; Lacerda, A.; Hundley, M.F.; Thompson, J.D.; Pagliuso, P.G.; Sarrao, J.L. Field-tuned quantum critical point in CeCoIn5 near the superconducting upper critical field. Phys. Rev. B 2005, 71, 104528. [Google Scholar] [CrossRef]
- Gegenwart, P.; Custers, J.; Geibel, C.; Neumaier, K.; Tayama, T.; Tenya, K.; Trovarelli, O.; Steglich, F. Magnetic-field induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 2002, 89, 056402. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Matsuda, T.; Sugawara, H.; Sato, H.; Ohkuni, H.; Settai, R.; Onuki, Y.; Yamamoto, E.; Haga, Y.; Andreev, A.; et al. Thermal properties of metamagnetic transition in heavy-fermion systems. J. Magn. Magn. Mater. 1998, 177–181, 271–276. [Google Scholar] [CrossRef]
- Friedemann, S.; Wirth, S.; Oeschler, N.; Krellner, C.; Geibel, C.; Steglich, F.; MaQuilon, S.; Fisk, S.; Paschen, S.; Zwicknagl, G. Hall effect measurements and electronic structure calculations on YbRh2Si2 and its reference compounds LuRh2Si2 and YbIr2Si2. Phys. Rev. B 2010, 82, 035103. [Google Scholar] [CrossRef]
- Paschen, S.; Lühmann, T.; Wirth, S.; Gegenwart, P.; Trovarelli, O.; Geibel, C.; Steglich, F.; Coleman, P.; Si, Q. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 2004, 432, 881. [Google Scholar] [CrossRef]
- Orlando, T.P.; McNiff, E.J., Jr.; Foner, S.; Beasleya, M.R. Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si. Phys. Rev. B 1979, 19, 4545. [Google Scholar] [CrossRef]
- Rauchschwalbe, U.; Lieke, W.; Bredl, C.D.; Steglich, F.; Aarts, J.; Martini, K.M.; Mota, A.C. Critical fields of the “heavy-fermion” superconductor CeCu2Si2. Phys. Rev. Lett. 1982, 49, 1448–1451. [Google Scholar] [CrossRef]
- Maksimovic, N.; Eilbott, D.H.; Cookmeyer, T.; Wan, F.; Rusz, J.; Nagarajan, V.; Haley, S.C.; Maniv, E.; Gong, A.; Faubel, S.; et al. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5. Science 2021, 375, 76–81. [Google Scholar] [CrossRef]
- Custers, J.; Lorenzer, K.; Müller, M.; Prokofiev, A.; Sidorenko, A.; Winkler, H.; Strydom, A.M.; Shimura, Y.; Sakakibara, T.; Yu, R.; et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. Nat. Mater. 2012, 11, 189. [Google Scholar] [CrossRef]
- Kim, J.S.; Moreno, N.O.; Sarrao, J.L.; Thompson, J.D.; Stewart, G.R. Field-induced non-Fermi-liquid behavior in Ce2IrIn8. Phys. Rev. B 2004, 69, 024402. [Google Scholar] [CrossRef]
- Tanatar, M.A.; Paglione, J.; Petrovic, C.; Taillefer, L. Anisotropic violation of the Wiedemann-Franz law at a quantum critical point. Science 2007, 316, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- van der Meulen, H.P.; Tarnawski, Z.; de Visser, A.; Franse, J.J.M.; Perenboom, J.A.A.J.; Althof, D.; van Kempen, H. Specific heat of UPt3 in magnetic fields up to 24.5 T. Phys. Rev. B 1990, 41, 9352–9357. [Google Scholar] [CrossRef] [PubMed]
- Tokiwa, Y.; Pikul, A.; Gegenwart, P.; Steglich, F.; Bud’ko, S.L.; Canfield, P.C. Low-temperature thermodynamic properties of the heavy-fermion compound YbAgGe close to the field-induced quantum critical point. Phys. Rev. B 2006, 73, 094435. [Google Scholar] [CrossRef]
- Niklowitz, P.G.; Knebel, G.; Flouquet, J.; Bud’ko, S.L.; Canfield, P.C. Field-induced non-Fermi-liquid resistivity of stoichiometric YbAgGe single crystals. Phys. Rev. B 2006, 73, 125101. [Google Scholar] [CrossRef]
- Kambe, S.; Huxley, A.; Flouquet, J.; Jansen, A.G.M.; Wyder, P. Hall resistivity in the heavy Fermion normal state of UPt3 up to 26 T. J. Phys. Condens. Matter 1999, 11, 221–227. [Google Scholar] [CrossRef]
- Sakamoto, I.; Shomi, Y.; Ohara, S. Anomalous Hall effect in heavy fermion compounds Ce2MIn8 (M=Rh or Ir). Physica B 2003, 329–333, 607–609. [Google Scholar] [CrossRef]
- Zhou, B.B.; Misra, S.; da Silva Neto, E.H.; Aynajian, P.; Baumbach, R.E.; Thompson, J.D.; Bauer, E.D.; Yazdani, A. Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 2013, 9, 474–479. [Google Scholar] [CrossRef]
- Singh, S.; Capan, C.; Nicklas, M.; Rams, M.; Gladun, A.; Lee, H.; DiTusa, J.F.; Fisk, Z.; Steglich, F.; Wirth, S. Probing the quantum critical behavior of CeCoIn5 via Hall effect measurements. Phys. Rev. Lett. 2007, 98, 057001. [Google Scholar] [CrossRef]
- Hadžić–Leroux, M.; Hamzić, A.; Fert, A.; Haen, P.; Lapierre, F.; Laborde, O. Hall effect in heavy-fermion systems: UPt3, UAl2, CeAl3, CeRu2Si2. Europhys. Lett. 1986, 1, 579–584. [Google Scholar] [CrossRef]
- Chen, J.W.; Lambert, S.E.; Maple, M.B.; Fisk, Z.; Smith, J.L.; Stewart, G.R.; Willis, J.O. Upper critical magnetic field of the heavy-fermion superconductor UPt3. Phys. Rev. B 1984, 30, 1583–1585. [Google Scholar] [CrossRef]
- Bud’ko, S.; Morosan, E.; Canfield, P. Anisotropic Hall effect in single-crystal heavy-fermion YbAgGe. Phys. Rev. B 2005, 71, 054408. [Google Scholar] [CrossRef]
- Varma, C.M. Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 2020, 92, 031001. [Google Scholar] [CrossRef]
- Hussey, N.E.; Takenaka, K.; Takagi, H. Universality of the Mott–Ioffe–Regel limit in metals. Philos. Mag. 2004, 84, 2847–2864. [Google Scholar] [CrossRef]
- Gunnarsson, O.; Calandra, M.; Han, J.E. Colloquium: Saturation of electrical resistivity. Rev. Mod. Phys. 2003, 75, 1085–1099. [Google Scholar] [CrossRef]
- Ioffe, A.F.; Regel, A.R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 1960, 4, 237–291. [Google Scholar]
- Mott, N.F. Conduction in non-crystalline systems IX. the minimum metallic conductivity. Philos. Mag. 1972, 26, 1015–1026. [Google Scholar] [CrossRef]
- Abrahams, E.; Si, Q. Quantum criticality in the iron pnictides and chalcogenides. J. Phys. Condens. Matter 2011, 23, 223201. [Google Scholar] [CrossRef]
- Werman, Y.; Kivelson, S.A.; Berg, E. Non-quasiparticle transport and resistivity saturation: A view from the large-N limit. Npj Quantum Mater. 2017, 2, 7. [Google Scholar] [CrossRef]
- Emery, V.J.; Kivelson, S.A. Superconductivity in bad metals. Phys. Rev. Lett. 1995, 74, 3253–3256. [Google Scholar] [CrossRef]
- Friedemann, S.; Oeschler, N.; Wirth, S.; Krellner, C.; Geibel, C.; Steglich, F.; Paschen, S.; Kirchner, S.; Si, Q. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl. Acad. Sci. USA 2010, 107, 14547. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.H.; Analytis, J.G.; Kucharczyk, C.; Fisher, I.R. Determination of the phase diagram of the electron-doped superconductor Ba(Fe1-xCox)2As2. Phys. Rev. B 2009, 79, 014506. [Google Scholar] [CrossRef]
- Si, Q.; Paschen, S. Quantum phase transitions in heavy fermion metals and Kondo insulators. Phys. Status Solidi B 2013, 250, 425. [Google Scholar] [CrossRef]
- Badoux, S.; Tabis, W.; Laliberté, F.; Grissonnanche, G.; Vignolle, B.; Vignolles, D.; Béard, J.; Bonn, D.A.; Hardy, W.N.; Liang, R.; et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 2016, 531, 210–214. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Senthil, T.; Vojta, M.; Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 2004, 69, 035111. [Google Scholar] [CrossRef]
- Oshikawa, M. Topological approach to Luttinger’s theorem and Fermi surface of a Kondo lattice. Phys. Rev. Lett. 2000, 84, 3370–3373. [Google Scholar] [CrossRef]
- Prochaska, L.; Li, X.; MacFarland, D.C.; Andrews, A.M.; Bonta, M.; Bianco, E.F.; Yazdi, S.; Schrenk, W.; Detz, H.; Limbeck, A.; et al. Singular charge fluctuations at a magnetic quantum critical point. Science 2020, 367, 285. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Z.K.; Zhang, Y.; Yu, R.; Zhu, J.X.; Lee, J.; Moore, R.; Schmitt, F.; Li, W.; Riggs, S.; et al. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nat. Commun. 2015, 6, 7777. [Google Scholar] [CrossRef]
- Yu, R.; Si, Q. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides. Phys. Rev. B 2017, 96, 125110. [Google Scholar] [CrossRef]
- Komijani, Y.; Kotliar, G. Analytical slave-spin mean-field approach to orbital selective Mott insulators. Phys. Rev. B 2017, 96, 125111. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taupin, M.; Paschen, S. Are Heavy Fermion Strange Metals Planckian? Crystals 2022, 12, 251. https://doi.org/10.3390/cryst12020251
Taupin M, Paschen S. Are Heavy Fermion Strange Metals Planckian? Crystals. 2022; 12(2):251. https://doi.org/10.3390/cryst12020251
Chicago/Turabian StyleTaupin, Mathieu, and Silke Paschen. 2022. "Are Heavy Fermion Strange Metals Planckian?" Crystals 12, no. 2: 251. https://doi.org/10.3390/cryst12020251
APA StyleTaupin, M., & Paschen, S. (2022). Are Heavy Fermion Strange Metals Planckian? Crystals, 12(2), 251. https://doi.org/10.3390/cryst12020251