Low-Temperature Magnetic and Magnetocaloric Properties of Manganese-Substituted Gd0.5Er0.5CrO3 Orthochromites
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Structural Study
3.2. Magnetic Study
3.3. Magnetocaloric Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ateia, E.E.; Ismail, H.; Elshimy, H.; Abdelmaksoud, M.K. Structural and Magnetic Tuning of LaFeO3 Orthoferrite Substituted Different Rare Earth Elements to Optimize Their Technological Applications. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1713–1725. [Google Scholar] [CrossRef]
- Chakraborty, P.; Basu, S. Structural, electrical and magnetic properties of Er doped YCrO3 nanoparticles. Mater. Chem. Phys. 2021, 259, 124053. [Google Scholar] [CrossRef]
- Yoshii, K. Magnetic properties of perovskite GdCrO3. J. Solid State Chem. 2001, 159, 204–208. [Google Scholar] [CrossRef]
- Aamir, M.; Bibi, I.; Ata, S.; Majid, F.; Kamal, S.; Alwadai, N.; Sultan, M.; Iqbal, S.; Aadil, M.; Iqbal, M. Graphene oxide nanocomposite with Co and Fe doped LaCrO3 perovskite active under solar light irradiation for the enhanced degradation of crystal violet dye. J. Mol. Liq. 2021, 322, 114895. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.W.; Zhang, X.; Zhang, L.L.; Yao, R.; Rao, G.H. Reversals of magnetization and exchange-bias in perovskite chromite YbCrO3. J. Alloys Compd. 2016, 662, 268–271. [Google Scholar] [CrossRef]
- Hornreich, R.M. Magnetic interactions and weak ferromagnetism in the rare-earth orthochromites. J. Magn. Magn. Mater. 1978, 7, 280–285. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, J.; Feng, Z.; Li, L.; Li, B.; Zhou, Y.; Chen, Z.; Cao, S. Magnetization reversal and Yb3+/Cr3+ spin ordering at low temperature for perovskite YbCrO3 chromites. J. Appl. Phys. 2010, 108, 013905. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, S.; Ren, W.; Feng, Z.; Yuan, S.; Kang, B.; Lu, B.; Zhang, J. Magnetization switching of rare earth orthochromite CeCrO3. Appl. Phys. Lett. 2014, 104, 232405. [Google Scholar] [CrossRef]
- Panwar, N.; Joby, J.P.; Kumar, S.; Coondoo, I.; Vashundhara, M.; Kumar, N.; Palai, R.; Singhal, R.; Katiyar, R.S. Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites. AIP Adv. 2018, 8, 055818. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Sharma, V.; McDannald, A.; Reboredo, F.A.; Jain, M. Magnetic and magnetocaloric properties of iron substituted holmium chromite and dysprosium chromite. RSC Adv. 2016, 6, 9475–9483. [Google Scholar] [CrossRef]
- Sharma, M.K.; Mukherjee, K. Magnetic and universal magnetocaloric behavior of rare-earth substituted DyFe0.5Cr0.5O3. J. Magn. Magn. Mater. 2017, 444, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Seehra, M.S.; Guild, C.J.; Suib, S.L.; Poudel, N.; Lorenz, B.; Jain, M. Magnetic and magnetocaloric properties of HoCrO3 tuned by selective rare-earth doping. Phys. Rev. B 2017, 95, 184421. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qian, H.; Xie, L.; Guo, Y.; Liu, Y.; He, X. The spin reorientation and improvement of magnetocaloric effect in HoCr1−xGaxO3 (0 ≤ x ≤ 0.5). J. Alloys Compd. 2021, 885, 160863. [Google Scholar] [CrossRef]
- Yoshii, K. Positive exchange bias from magnetization reversal in La1−xPrxCrO3 (x ~ 0.7–0.85). Appl. Phys. Lett. 2011, 99, 142501. [Google Scholar] [CrossRef]
- Oliveira, G.N.P.; Machado, P.; Pires, A.L.; Pereira, A.M.; Araújo, J.P.; Lopes, A.M.L. Magnetocaloric effect and refrigerant capacity in polycrystalline YCrO3. J. Phys. Chem. Solids 2016, 91, 182–188. [Google Scholar] [CrossRef]
- Oliveira, G.N.P.; Pires, A.L.; Machado, P.; Pereira, A.M.; Araújo, J.P.; Lopes, A.M.L. Effect of chemical pressure on the magnetocaloric effect of perovskite-like RCrO3 (R-Yb, Er, Sm and Y). J. Alloys Compd. 2019, 797, 269–276. [Google Scholar] [CrossRef]
- Kumar, S.; Coondoo, I.; Vasundhara, M.; Kumar, S.; Kholkin, A.L.; Panwar, N. Structural, magnetic, magnetocaloric and specific heat investigations on Mn doped PrCrO3 orthochromites. J. Phys. Condens. Matter 2017, 29, 195802. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.H.; Yang, J.; Kan, X.C.; Song, W.H.; Dai, J.M.; Sun, Y.P. Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal. J. Appl. Phys. 2015, 117, 133901. [Google Scholar] [CrossRef]
- Shi, J.; Yin, S.; Seehra, M.S.; Jain, M. Enhancement in magnetocaloric properties of ErCrO3 via A-site Gd substitution. J. Appl. Phys. 2018, 123, 193901. [Google Scholar] [CrossRef]
- Kanwar, K.; Coondoo, I.; Anas, M.; Malik, V.K.; Kumar, P.; Kumar, S.; Kulriya, P.K.; Kaushik, S.D.; Panwar, N. A comparative study of the structural, optical, magnetic and magnetocaloric properties of HoCrO3 and HoCr0.85Mn0.15O3 orthochromites. Ceram. Int. 2021, 47, 7386–7397. [Google Scholar] [CrossRef]
- Chan, T.S.; Liu, R.S.; Yang, C.C.; Li, W.-H.; Lien, Y.H.; Huang, C.Y.; Lee, J.F. Chemical Size Effect on the Magnetic and Electrical Properties in the (Tb1−x Eux)MnO3(0 ≤ x ≤ 1.0) System. J. Phys. Chem. B 2007, 111, 2262–2267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Weidner, D.J.; Parise, J.B.; Cox, D.E. Thermal expansion and structural distortion of perovskite-data for NaMgF3 perovskite. Part I. Phys. Earth Planet. Inter. 1993, 76, 1–16. [Google Scholar] [CrossRef]
- Søndenå, R.; Stølen, S.; Ravindran, P.; Grande, T.; Allan, N.L. Corner-versus face-sharing octahedra in AMnO3 perovskites (A = Ca, Sr, and Ba). Phys. Rev. B 2007, 75, 184105. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Siegel, D.J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. J. Mater. Chem. A 2019, 7, 3216–3227. [Google Scholar] [CrossRef]
- Mahana, S.; Pandey, S.K.; Rakshit, B.; Nandi, P.; Basu, R.; Dhara, S.; Turuchini, S.; Zema, N.; Manju, U.; Mahanti, S.D.; et al. Site substitution in GdMnO3: Effects on structural, electronic, and magnetic properties. Phys. Rev. B 2020, 102, 245120. [Google Scholar] [CrossRef]
- Chiang, F.K.; Chu, M.W.; Chou, F.C.; Jeng, H.T.; Sheu, H.S.; Chen, F.R.; Chen, C.H. Effect of Jahn-Teller distortion on magnetic ordering in Dy(Fe,Mn)O3 perovskites. Phys. Rev. B 2011, 83, 245105. [Google Scholar] [CrossRef]
- Cooke, A.H.; Martin, D.M.; Wells, M.R. Magnetic interactions in gadolinium orthochromite, GdCrO3. J. Phys. C Solid State Phys. 1974, 7, 3133. [Google Scholar] [CrossRef]
- Kumar, D.; Jena, P.; Singh, A.K. Structural, magnetic and dielectric studies on half-doped Nd0.5Ba0.5CoO3 perovskite. J. Magn. Magn. Mater. 2020, 516, 167330. [Google Scholar] [CrossRef]
- Deng, D.; Wang, X.; Zheng, J.; Qian, X.; Yu, D.; Sun, D.; Jing, C.; Lu, B.; Kang, B.; Cao, S.; et al. Phase separation and exchange bias effect in Ca doped EuCrO3. J. Magn. Magn. Mater. 2015, 395, 283–288. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91–98. [Google Scholar] [CrossRef]
- Tishin, A.M. Magnetocaloric Effect in the Vicinity of Phase Transitions. Handb. Magn. Mater. 1999, 12, 395–524. [Google Scholar] [CrossRef]
- Lorusso, G.; Roubeau, O.; Evangelisti, M. Rotating Magnetocaloric Effect in an Anisotropic Molecular Dimer. Angew. Chem. Int. Ed. 2016, 55, 3360–3363. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon: New York, NY, USA, 1958. [Google Scholar]
- Amaral, V.S.; Amaral, J.S. Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J. Magn. Magn. Mater. 2004, 276, 2104–2105. [Google Scholar] [CrossRef]
(Å) | 5.5220 | 5.5335 | 5.5530 | 5.5835 | 5.6072 | 5.6372 |
(Å) | 7.5648 | 7.5541 | 7.5439 | 7.5376 | 7.5183 | 7.5029 |
(Å) | 5.2691 | 5.2709 | 5.2721 | 5.2767 | 5.2740 | 5.2744 |
(Å3) | 220.109 | 220.330 | 220.860 | 222.081 | 222.340 | 223.085 |
χ2 (%) | 3.29 | 2.48 | 2.08 | 1.94 | 2.62 | 2.03 |
P (%) | 19 | 16.7 | 16.1 | 16.7 | 19.5 | 19.2 |
WP (%) | 14.9 | 12.6 | 11.4 | 11.7 | 13.6 | 12.8 |
Cr–O (Å) | 1.982 | 1.9825 | 1.9864 | 1.9925 | 1.9983 | 2.0047 |
(ο) | 17.40 | 17.71 | 18.29 | 19.06 | 19.84 | 20.65 |
ϕ (ο) | 9.922 | 9.32 | 8.75 | 8.06 | 7.22 | 6.19 |
0.0468 | 0.0486 | 0.0518 | 0.0564 | 0.0612 | 0.0665 | |
0.8523 | 0.8510 | 0.8497 | 0.8484 | 0.8472 | 0.8459 |
Compound | External Field (Oe) | (Oe) | (K) |
---|---|---|---|
= 0.4 | 100 | −301.81 | −24.43 |
= 0.5 | 100 | −360.70 | −24.59 |
Compound | = 0 | = 0.1 | = 0.2 | = 0.3 | = 0.4 | = 0.5 |
---|---|---|---|---|---|---|
θ (K) | −26.59 | −28.57 | −26.29 | −24.39 | −23.73 | −21.48 |
C(emu-K/Oe-mole) | 10.99 | 11.80 | 11.56 | 11.59 | 11.76 | 11.70 |
(μB) | 9.38 | 9.72 | 9.62 | 9.63 | 9.70 | 9.68 |
(μB) | 9.60 | 9.65 | 9.69 | 9. 74 | 9.79 | 9.83 |
(K) | 144.28 | 132.77 | 119.10 | 103.91 | 86.02 | 68.01 |
T0 (K) | 143.03 | 131.33 | 117.13 | 102.68 | 84.23 | 66.71 |
θ (K) | −53.42 | −48.98 | −51.07 | −36.70 | −36.8 | −28.34 |
C(emu-K/Oe-mole) | 11.91 | 12.50 | 12.41 | 12.00 | 12.19 | 11.91 |
Je/B | 9.54 | 8.76 | 7.81 | 6.85 | 5.62 | 4.53 |
De/B | 2.53 | 2.60 | 2.88 | 2.13 | 2.33 | 1.80 |
Compound | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HMax. (T) | ∆SMax. (J/kg-K) | RCP (J/kg) | ∆SMax. (J/kg-K) | RCP (J/kg) | ∆SMax. (J/kg-K) | RCP (J/kg) | ∆SMax. (J/kg-K) | RCP (J/kg) | ∆SMax. (J/kg-K) | RCP (J/kg) | ∆SMax. (J/kg-K) | RCP (J/kg) |
1 | 3.34 | 75.18 | 3.25 | 77.19 | 2.87 | 70.15 | 2.94 | 65.52 | 2.10 | 58.73 | 1.49 | 44.04 |
2 | 6.69 | 150.37 | 6.51 | 154.38 | 5.74 | 140.30 | 5.88 | 131.04 | 4.20 | 117.46 | 2.98 | 88.09 |
3 | 10.04 | 225.56 | 9.77 | 231.57 | 8.62 | 210.46 | 8.82 | 196.56 | 6.31 | 176.20 | 4.47 | 132.13 |
4 | 13.39 | 300.75 | 13.02 | 308.76 | 11.49 | 280.61 | 11.76 | 262.08 | 8.41 | 234.93 | 5.96 | 176.18 |
5 | 16.74 | 375.94 | 16.28 | 385.95 | 14.36 | 350.76 | 14.70 | 327.61 | 10.52 | 293.67 | 7.46 | 220.22 |
6 | 20.09 | 451.13 | 19.54 | 463.14 | 17.24 | 420.92 | 17.64 | 393.13 | 12.62 | 352.40 | 8.95 | 264.27 |
7 | 23.44 | 526.32 | 22.79 | 540.33 | 20.11 | 491.07 | 20.58 | 458.65 | 14.72 | 411.13 | 10.44 | 308.32 |
8 | 26.78 | 601.51 | 26.05 | 617.52 | 22.99 | 561.23 | 23.53 | 524.17 | 16.83 | 469.87 | 11.93 | 352.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panwar, N.; Singh, K.; Kanwar, K.; Bitla, Y.; Kumar, S.; Puli, V.S. Low-Temperature Magnetic and Magnetocaloric Properties of Manganese-Substituted Gd0.5Er0.5CrO3 Orthochromites. Crystals 2022, 12, 263. https://doi.org/10.3390/cryst12020263
Panwar N, Singh K, Kanwar K, Bitla Y, Kumar S, Puli VS. Low-Temperature Magnetic and Magnetocaloric Properties of Manganese-Substituted Gd0.5Er0.5CrO3 Orthochromites. Crystals. 2022; 12(2):263. https://doi.org/10.3390/cryst12020263
Chicago/Turabian StylePanwar, Neeraj, Kuldeep Singh, Komal Kanwar, Yugandhar Bitla, Surendra Kumar, and Venkata Sreenivas Puli. 2022. "Low-Temperature Magnetic and Magnetocaloric Properties of Manganese-Substituted Gd0.5Er0.5CrO3 Orthochromites" Crystals 12, no. 2: 263. https://doi.org/10.3390/cryst12020263
APA StylePanwar, N., Singh, K., Kanwar, K., Bitla, Y., Kumar, S., & Puli, V. S. (2022). Low-Temperature Magnetic and Magnetocaloric Properties of Manganese-Substituted Gd0.5Er0.5CrO3 Orthochromites. Crystals, 12(2), 263. https://doi.org/10.3390/cryst12020263