Effect of Current on Corrosion Resistance of Duplex Stainless Steel Layer Obtained by Plasma Arc Cladding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of 2205 DSS Cladding Layer
2.3. Macro Morphology and Microstructure Analysis
2.4. Electrochemical Measurements
2.5. XPS Analysis
3. Results and discussion
3.1. Effect of Current on Macro Morphology and Microstructure of Cladding Layers
3.2. Analysis on Potentiodynamic Polarization Curve of 2205 DSS Cladding Layer under Different Current
3.3. Chemical Stability of Passive Film Formed on the Cladding Layer under Different Current
3.4. XPS Results and Corrosion Mechanism of Cladding Layer
4. Conclusions
- (1)
- The current increased from 80 A to 120 A, the dilution ratio of cladding layer increased, and its macro morphology varied. When the current was 100 A, the forming of cladding layer was continuous, complete and fine with the dilution ratio of 11.43%.
- (2)
- Regardless of the current, the microstructure of cladding layer was composed of austenite and ferrite. The mass ratio of austenite to ferrite in the microstructure increased with the increase of current. It was up to the optimum of 1.207 with the current of 100 A.
- (3)
- When the current was 100 A, the self-corrosion potential of cladding layer was the maximum while the corrosion current density was the minimum, and the corrosion resistance of cladding layer was the optimum. The main reason was the existence of Mo6+ in the passive film, which stabilized the passive film and promoted the formation of Cr2O3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, H.W.; Dönges, B.; Krupp, U.; Pietsch, U.; Fritzen, C.-P.; Yun, X.B.; Christ, H.-J. Evolution of the residual stresses of types I, II, and III of duplex stainless steel during cyclic loading in high and very high cycle fatigue regimes. Int. J. Fatigue 2020, 142, 105972. [Google Scholar] [CrossRef]
- Yuya, H.; Kobayashi, R.; Otomo, K.; Yabuuchi, K.; Komura, A. Microstructure and mechanical properties of HAZ of RPVS clad with duplex stainless steel. J. Nucl. Mater. 2021, 545, 152756. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Jing, H.Y.; Xu, L.Y.; Zhang, T.G.; Xu, Y.T. Research progress on microstructure and properties of welded joint of ferrite/austenite duplex stainless steel. Trans. Mater. Heat Treat. 2020, 41, 13–27. [Google Scholar]
- Rajesh-Kannan, A.; Siva-Shanmugam, N.; Rajkumar, V.; Vishnukumar, M. Insight into the microstructural features and corrosion properties of wire arc additive manufactured super duplex stainless steel (ER2594). Mater. Lett. 2020, 270, 127680. [Google Scholar] [CrossRef]
- Dong, C.F.; Luo, H.; Xiao, K.; Sun, T.; Liu, Q.; Li, X.G. Effect of temperature and Cl− concentration on pitting of 2205 duplex stainless steel. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 641–647. [Google Scholar] [CrossRef]
- Khattak, M.A.; Zaman, S.; Kazi, S.; Ahmed, H.; Habib, H.M.; Ali, H.M.; Tamin, M.N. Failure investigation of welded 430 stainless steel plates for conveyor belts. Eng. Fail. Anal. 2020, 116, 104754. [Google Scholar] [CrossRef]
- Pu, J.; Li, Z.P.; Hu, Q.X.; Wang, Y.X. Effect of heat treatment on microstructure and wear resistance of high manganese steel surfacing layer. Int. J. Mod. Phys. B 2019, 33, 1940035. [Google Scholar] [CrossRef]
- Wu, L.; Pu, J.; Wu, M.F.; Long, W.M.; Zhong, S.J.; Hu, Q.X.; Lan, Y. Effects of different tungsten carbide contents on microstructure and properties of Ni-based tungsten carbide cladding layer by plasma arc cladding technology. Mater. Rep. 2021, 35, 16111–16114, 16119. [Google Scholar]
- Jin, M.; He, D.Y.; Wang, Z.J.; Zhou, Z.; Wang, G.H.; Li, X.X. Microstructure and properties of laser cladded 2205 dual-phase stainless steel/TiC composite coatings. Laser. Optoelectron. P 2018, 055, 285–290. [Google Scholar]
- Pu, J.; Rao, J.W.; Shen, Y.F.; Liu, C.; Zhang, L.; Wang, Y.X. Effect of Ti element on the microstructure and properties of high chromium surfacing layer. Int. J. Mod. Phys. B 2020, 34, 2040028. [Google Scholar] [CrossRef]
- Chen, L.; Richter, B.; Zhang, X.Z.; Ren, X.D.; Frank, E.; Pfefferkorn, B. Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit. Manuf. 2020, 32, 101013. [Google Scholar] [CrossRef]
- Liu, S.; Fang, W.P.; Yi, Y.Y.; Deng, Y.L. Study on microstructure and properties of flux cored twin-wire CMT welded joint of 2205 duplex stainless steel. H. Work. Technol. 2020, 49, 16–19, 24. [Google Scholar]
- Liu, Y.; Bao, Y.F.; Song, Q.N.; Jiang, Y.F. Influence of sensitization on pitting corrosion in surfacing layer of 2209 duplex stainless steel. Trans. China Weld. Inst. 2020, 41, 33–38, 98–99. [Google Scholar]
- Brunner-Schwer, C.; Petrat, T.; Graf, B.; Rethmeier, M. Highspeed-plasma-laser-cladding of thin wear resistance coatings: A process approach as a hybrid metal deposition-technology. Vacuum 2019, 166, 123–126. [Google Scholar] [CrossRef]
- Ding, H.; Dai, J.W.; Dai, T.; Sun, Y.W.; Lu, T.; Jia, X.J.; Huang, D.S. Effect of preheating/post-isothermal treatment temperature on microstructures and properties of cladding on U75V rail prepared by plasma cladding method. Surf. Coat. Technol. 2020, 399, 126122. [Google Scholar] [CrossRef]
- Huang, J.K.; Liu, S.; Yu, S.R.; An, L.; Yu, X.Q.; Fan, D.; Yang, F.Q. Cladding Inconel 625 on cast iron via bypass coupling micro-plasma arc welding. J. Manuf. Process. 2020, 56, 106–115. [Google Scholar] [CrossRef]
- Cui, S.; Pang, S.; Pang, D.; Zhang, Z. Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding. Materials 2021, 14, 3426. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.R.; Miranda, A.; Gonzalez, D. Maintenance of the Austenite/Ferrite Ratio Balance in GTAW DSS Joints Through Process Parameters Optimization. Materials 2020, 13, 780. [Google Scholar] [CrossRef] [Green Version]
- Hany, S.; Asiful, H.S.; Jabair, A.M.; Tauriq, U. Ameliorative Corrosion Resistance and Microstructure Characterization of 2205 Duplex Stainless Steel by Regulating the Parameters of Pulsed Nd:YAG Laser Beam Welding. Metals 2021, 11, 1206. [Google Scholar]
- Syed, W.U.H.; Pinkerton, A.J.; Li, L. A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping. Appl. Surf. Sci. 2005, 247, 268–276. [Google Scholar] [CrossRef]
- Lin, C.M. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade. Vacuum 2015, 115, 117–123. [Google Scholar] [CrossRef]
- Wang, H.; Woo, W.; Kim, D.-K.; Em, V.; Lee, S.Y. Effect of chemical dilution and the number of weld layers on residual stresses in a multi-pass low-transformation-temperature weld. Mater. Des. 2018, 160, 384–394. [Google Scholar] [CrossRef]
- Hemmati, I.; Ocelik, V.; De-Hosson, J.T.M. Dilution effects in laser cladding of Ni-Cr-B-Si-C hardfacing alloys. Mater. Lett. 2012, 84, 69–72. [Google Scholar] [CrossRef]
- Kang, D.H.; Lee, H.W. Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds. Corros. Sci. 2013, 74, 396–407. [Google Scholar] [CrossRef]
- Abreu, C.M.; Cristóbal, M.J.; Losada, R.; Nóvoa, X.R.; Pena, G.; Pérez, M.C. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels. Electrochim. Acta 2006, 51, 2991–3000. [Google Scholar] [CrossRef]
- Guiñón-Pina, V.; Igual-Muñoz, A.; García-Antón, J. Influence of pH on the electrochemical behaviour of a duplex stainless steel in highly concentrated LiBr solutions. Corros. Sci. 2011, 53, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.Y.; Cheng, Y.F. In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel. Corros. Sci. 2011, 53, 850–853. [Google Scholar] [CrossRef]
- Boissy, C.; Alemany-Dumont, C.; Normand, B. EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution. Electrochem. Commun. 2013, 26, 10–12. [Google Scholar] [CrossRef]
- Montemor, M.F.; Simões, A.M.P.; Ferreira, M.G.S.; Belo, M.D.C. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels. Corros. Sci. 1999, 41, 17–34. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, X.X.; Wu, B.; Wang, J.; Shao, X.H.; Yang, L.X.; Zheng, S.J.; Zhou, Y.T.; Jin, Q.Q.; Qguzie, E.E.; et al. Chloride attack on the passive film of duplex alloy. Corros. Sci. 2019, 154, 123–128. [Google Scholar] [CrossRef]
- Potgieter, J.H.; Olubambi, P.A.; Cornish, L.; Machio, C.N.; Sherif, E.-S.M. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros. Sci. 2008, 50, 2572–2579. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.F.; Lin, Y.H. Electronic theoretical study of the influence of Cr on corrosion resistance of Fe-Cr alloy. Acta Metall. Sin. 2017, 53, 622–630. [Google Scholar]
- Li, F.; Wu, Y.S.; Yang, D.J.; Zhang, W.Q. The possive film and pitting propagation models of Fe-Cr alloy. J. Beijing Univ. Iron Steel Technol. 1986, 1, 125–134. [Google Scholar]
- Cheng, X.Q.; Wang, Y.; Li, X.G.; Dong, C.F. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel. J. Mater. Sci. Technol. 2018, 34, 2140–2148. [Google Scholar] [CrossRef]
- Betova, I.; Bojinov, M.; Karastoyanov, V.; Kinnunen, P.; Saario, T. Estimation of kinetic and transport parameters by quantitative evaluation of EIS and XPS data. Electrochim. Acta 2010, 55, 6163–6173. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.; Matykina, E. Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions. Corros. Sci. 2008, 50, 1796–1806. [Google Scholar] [CrossRef]
- Abreu, C.M.; Cristóbal, M.J.; Losada, R.; Nóvoa, X.R.; Pena, G.; Pérez, M.C. High frequency impedance spectroscopy study of passive films formed on AISI 316 stainless steel in alkaline medium. J. Electroanal. Chem. 2004, 572, 335–345. [Google Scholar] [CrossRef]
Materials | C | Si | Mn | P | S | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|---|---|
ER2209 | 0.02 | 0.53 | 1.90 | 0.02 | 0.004 | 21.73 | 9.12 | 2.67 | Balance |
Q345 | ≤0.20 | ≤0.50 | ≤1.70 | ≤0.035 | ≤0.035 | ≤0.30 | ≤0.50 | ≤0.10 | Balance |
Current | Potential/VSCE | Current Density/A·cm−2 |
---|---|---|
90 | −0.241 | 3.09 × 10−6 |
100 | −0.213 | 1.95 × 10−7 |
110 | −0.251 | 3.69 × 10−7 |
Current | Rs (Ω·cm−2) | Cdl (F·cm−2) | Rct (Ω·cm−2) | n |
---|---|---|---|---|
90 | 10.3 | 3.50 × 10−5 | 5443 | 0.84 |
100 | 7.8 | 4.77 × 10−5 | 9078 | 0.92 |
110 | 4.7 | 8.12 × 10−5 | 5203 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, J.; Xie, P.; Long, W.; Wu, M.; Sheng, Y.; Sheng, J. Effect of Current on Corrosion Resistance of Duplex Stainless Steel Layer Obtained by Plasma Arc Cladding. Crystals 2022, 12, 341. https://doi.org/10.3390/cryst12030341
Pu J, Xie P, Long W, Wu M, Sheng Y, Sheng J. Effect of Current on Corrosion Resistance of Duplex Stainless Steel Layer Obtained by Plasma Arc Cladding. Crystals. 2022; 12(3):341. https://doi.org/10.3390/cryst12030341
Chicago/Turabian StylePu, Juan, Peng Xie, Weimin Long, Mingfang Wu, Yongwang Sheng, and Jie Sheng. 2022. "Effect of Current on Corrosion Resistance of Duplex Stainless Steel Layer Obtained by Plasma Arc Cladding" Crystals 12, no. 3: 341. https://doi.org/10.3390/cryst12030341
APA StylePu, J., Xie, P., Long, W., Wu, M., Sheng, Y., & Sheng, J. (2022). Effect of Current on Corrosion Resistance of Duplex Stainless Steel Layer Obtained by Plasma Arc Cladding. Crystals, 12(3), 341. https://doi.org/10.3390/cryst12030341