Photosensitive Alignment: Advanced Electronic Paper-Based Devices
Abstract
:1. Introduction
2. Adaptive Model for Extended Grayscale Performance
3. Security Films
4. Color ORW e-Paper
5. 3D Visualization
5.1. Stereoscopic ORW e-Paper
5.2. Lenticular Lens Array
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fergason, J. Liquid crystals: A big case for display. I. Opt. Spectra 1978, 12, 54–59. [Google Scholar]
- Fergason, J.; Berman, A. A push/pull surface-mode liquid-crystal shutter: Technology and applications. Liq. Cryst. 1989, 5, 1397–1404. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Zhou, K.; Kreit, E.; Raj, B.; Yang, S.; Sun, B.; Milarcik, A.; Clapp, L.; Schwartz, R. Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat. Photonics 2009, 3, 292–296. [Google Scholar] [CrossRef]
- Quiroga, J.A.; Canga, I.; Alonso, J.; Crespo, D. Reversible photoalignment of Liquid crystals: A path toward the creation of Rewritable Lenses. Sci. Rep. 2020, 10, 5739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chigrinov, V.; Kozenkov, V.; Kwok, H. Photoaligning: Physics and Applications in Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lin, T.; Xie, J.; Zhou, Y.; Zhou, Y.; Yuan, Y.; Fan, F.; Wen, S. Recent Advances in Photoalignment Liquid Crystal Polarization Gratings and Their Applications. Crystals 2021, 11, 900. [Google Scholar] [CrossRef]
- Chigrinov, V.; Kudreyko, A.; Guo, Q. Patterned Photoalignment in Thin Films: Physics and Applications. Crystals 2021, 11, 84. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kudreyko, A.A.; Podgornov, F.V. Optically Rewritable Liquid Crystal Displays: Characteristics and Performance. Crystals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kudreyko, A.A. Tunable optical properties for ORW e-paper. Liq. Cryst. 2021, 48, 1073–1077. [Google Scholar] [CrossRef]
- Kudreyko, A.; Chigrinov, V. Optimization of image writer modes for optically rewritable electronic paper. Liq. Cryst. 2021, 1–6. [Google Scholar] [CrossRef]
- Chigrinov, V.; Sun, J.; Wang, X. Photoaligning and photopatterning: New LC technology. Crystals 2020, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Muravsky, A.; Murauski, A.; Chigrinov, V.; Kwok, H.-S. Light printing of grayscale pixel images on optical rewritable electronic paper. Jpn. J. Appl. Phys. 2008, 47, 6347. [Google Scholar] [CrossRef]
- Sun, J.; Srivastava, A.K.; Zhang, W.; Wang, L.; Chigrinov, V.G.; Kwok, H.S. Optically rewritable 3D liquid crystal displays. Opt. Lett. 2014, 39, 6209–6212. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xin, S.J.; Liu, X.; Liu, Y.; Sun, J.; Wang, X.; Guo, Q.; Chigrinov, V.G. Colour generation for optically driving liquid crystal display. Liq. Cryst. 2020, 47, 1729–1734. [Google Scholar] [CrossRef]
- Li, J.; Bisoyi, H.K.; Tian, J.; Guo, J.; Li, Q. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches. Adv. Mater. 2019, 31, 1807751. [Google Scholar] [CrossRef]
- Chigrinov, V.; Sun, J.; Kuznetsov, M.; Belyaev, V.; Chausov, D. 38-1: Invited Paper: Liquid Crystal Applications in e-Paper and Security Films: New Trends. In Proceedings of the SID Symposium Digest of Technical Papers, Campbell, CA, USA, 17–21 May 2021; pp. 515–518. [Google Scholar]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials: Physics and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 17. [Google Scholar]
- Kiselev, A.D.; Chigrinov, V.; Huang, D.D. Photoinduced ordering and anchoring properties of azo-dye films. Phys. Rev. E 2005, 72, 061703. [Google Scholar] [CrossRef] [Green Version]
- Chigrinov, V.; Pikin, S.; Verevochnikov, A.; Kozenkov, V.; Khazimullin, M.; Ho, J.; Huang, D.D.; Kwok, H.-S. Diffusion model of photoaligning in azo-dye layers. Phys. Rev. E 2004, 69, 061713. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Chen, Y.W.; Lin, F.C.; Hung, C.M.; Shieh, H.P.D.; Huang, Y.P. Ambient-light-adaptive image quality enhancement for full-color e-paper displays using a saturation-based tone-mapping method. J. Soc. Inf. Disp. 2018, 26, 153–163. [Google Scholar] [CrossRef]
- Kroeker, K.L. Electronic paper’s next chapter. Commun. ACM 2009, 52, 15–17. [Google Scholar] [CrossRef]
- Eshkalak, S.K.; Khatibzadeh, M.; Kowsari, E.; Chinnappan, A.; Jayathilaka, W.; Ramakrishna, S. Overview of electronic ink and methods of production for use in electronic displays. Opt. Laser Technol. 2019, 117, 38–51. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Drzaic, P.; Yeo, J.S.; Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Display 2011, 19, 129–156. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, J.; Li, J.; Zhu, C.; Guo, J. Photoinduced dual-mode luminescent patterns in dicyanostilbene-based liquid crystal polymer films for anticounterfeiting application. ACS Appl. Polym. Mater. 2019, 1, 746–754. [Google Scholar] [CrossRef]
- Stoykova, E.; Van Paepegem, W.; De Pauw, S.; Degrieck, J.; Sainov, V. Study of mechanical characteristics of window security films by phase-stepping photoelasticity. In Proceedings of the 15th International School on Quantum Electronics: Laser Physics and Applications, Bourgas, Bulgaria, 19 December 2008; pp. 220–230. [Google Scholar]
- Xu, Y.; Li, Y.; Meng, Y.; Li, H. Mechanofluorochromic carbon dots under grinding stimulation. Nanoscale 2020, 12, 16433–16437. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kozenkov, V.M.; Yeung, F.S.-Y.; Xu, P.; Chigrinov, V.G.; Kwok, H.-S. Liquid-crystal photoalignment by super thin azo dye layer. Jpn. J. Appl. Phys. 2006, 45, 203. [Google Scholar] [CrossRef]
- Hasebe, H.; Kuwana, Y.; Yamazaki, O.; Takeuchi, K.; Takatsu, H. UV-curable liquid crystal for a retarder. Mol. Cryst. Liq. Cryst. 2010, 516, 45–47. [Google Scholar] [CrossRef]
- Guo, L.J. 54.1: Invited Paper: Structural Colors for Display and E-paper Applications. In Proceedings of the SID Symposium Digest of Technical Papers, Campbell, CA, USA, 1–6 June 2014; pp. 781–784. [Google Scholar]
- Lee, J.-K.; Lim, Y.-S.; Park, C.-H.; Park, Y.-I.; Kim, C.-D.; Hwang, Y.-K. a-Si: H thin-film transistor-driven flexible color E-paper display on flexible substrates. IEEE Electron Device Lett. 2010, 31, 833–835. [Google Scholar]
- Nose, M.; Yoshihara, T. Quantification of image quality for color electronic paper. J. Soc. Inf. Display 2012, 20, 624–631. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Liu, Y.; Shang, J.; Liu, H.; Liu, H.; Gong, X.; Chigrinov, V.; Kowk, H.S. A flexible optically re-writable color liquid crystal display. Appl. Phys. Lett. 2018, 112, 131902. [Google Scholar] [CrossRef]
- Lipton, L.; Starks, M.R.; Stewart, J.D.; Meyer, L.D. Stereoscopic Television System. U.S. Patent No. 4,523,226, 11 June 1985. [Google Scholar]
- Deng, Q.-L.; Su, W.-C.; Chen, C.-Y.; Lin, B.-S.; Ho, H.-W. Full color image splitter based on holographic optical elements for stereogram application. J. Disp. Technol. 2013, 9, 607–612. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, J.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. Paper No S9. 3: 3-D Grayscale Images Generation on Optically Rewritable Electronic Paper. In Proceedings of the SID Symposium Digest of Technical Papers, Campbell, CA, USA, 21 May–1 June 2015; p. 40. [Google Scholar]
- Dodgson, N.A. 3D without the glasses. Nature 2013, 495, 316–317. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, L.; Sun, J.T.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. Autostereoscopic 3D pictures on optically rewritable electronic paper. J. Soc. Inf. Display 2013, 21, 103–107. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chigrinov, V.; Kudreyko, A.; Sun, J. Photosensitive Alignment: Advanced Electronic Paper-Based Devices. Crystals 2022, 12, 364. https://doi.org/10.3390/cryst12030364
Chigrinov V, Kudreyko A, Sun J. Photosensitive Alignment: Advanced Electronic Paper-Based Devices. Crystals. 2022; 12(3):364. https://doi.org/10.3390/cryst12030364
Chicago/Turabian StyleChigrinov, Vladimir, Aleksey Kudreyko, and Jiatong Sun. 2022. "Photosensitive Alignment: Advanced Electronic Paper-Based Devices" Crystals 12, no. 3: 364. https://doi.org/10.3390/cryst12030364
APA StyleChigrinov, V., Kudreyko, A., & Sun, J. (2022). Photosensitive Alignment: Advanced Electronic Paper-Based Devices. Crystals, 12(3), 364. https://doi.org/10.3390/cryst12030364