Effect of Prior Surface Textures on the Resulting Roughness and Residual Stress during Bead-Blasting of Electron Beam Melted Ti-6Al-4V
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. Evolution of Surface Roughness during Bead-Blasting
3.2. Evolution of Surface Residual Stresses during Bead-Blasting
4. Discussion
4.1. Reduction of Surface Roughness during Bead-Blasting
4.2. Effect of Local Surface Texture on Mechanics of Bead-Blasting
4.3. Effect of Local Surface Texture on Residual Stresses Resulting from Bead-Blasting
5. Conclusions
- The surface smoothing effect resulting from bead-blasting was found to be correlated to as-received roughness. Specifically, surfaces with greater roughness exhibited a greater fractional reduction in roughness. The preliminary analysis showed that this correlation was rooted in the plasticity index, , of the as-received surfaces.
- The residual stress distribution resulting from a single bead impact was found to be highly sensitive to the texture of the affected surface. Specifically, it was determined that the local mean curvature affects the energy absorption and release characteristics of a surface. A bead striking an asperity (e.g., positive local mean curvature) resulted in fluctuations between compressive and tensile residual stress at and just below the affected surface—a condition that is detrimental to the objective of bead-blasting. Much smaller distributions of tensile stresses were observed for a bead striking a surface with a negative local mean curvature. They were still smaller for a bead striking a nominally flat surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabanettes, F.; Joubert, A.; Chardon, G.; Dumas, V.; Rech, J.; Grosjean, C.; Dimkovski, Z. Topography of as built surfaces generated in metal additive manufacturing: A multi scale analysis from form to roughness. Precis. Eng. 2018, 52, 249–265. [Google Scholar] [CrossRef]
- Snyder, J.C.; Stimpson, C.K.; Thole, K.A.; Mongillo, D.J. Build direction effects on microchannel tolerance and surface roughness. J. Mech. Des. 2015, 137, 111411. [Google Scholar] [CrossRef]
- Aguado-Montero, S.; Navarro, C.; Vázquez, J.; Lasagni, F.; Slawik, S.; Domínguez, J. Fatigue behaviour of PBF additive manufactured TI6AL4V alloy after shot and laser peening. Int. J. Fatigue 2022, 154, 106536. [Google Scholar] [CrossRef]
- Bagehorn, S.; Wehr, J.; Maier, H. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int. J. Fatigue 2017, 102, 135–142. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Wei, P.; Lin, Q.; Zhou, S. Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel. Int. J. Mech. Sci. 2020, 183, 105785. [Google Scholar] [CrossRef]
- Gariépy, A.; Miao, H.; Lévesque, M. Simulation of the shot peening process with variable shot diameters and impacting velocities. Adv. Eng. Softw. 2017, 114, 121–133. [Google Scholar] [CrossRef]
- Maliwemu, E.U.K.; Malau, V.; Iswanto, P.T. Effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness and surface hardness of 316L biomaterial. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012051. [Google Scholar] [CrossRef]
- Sasikumar, K.; Dineshkumar, K.; Deeban, K.; Sambathkumar, M.; Saravanan, N. Effect of shot peening on surface properties of Al7075 hybrid aluminum metal matrix composites. Mater. Today Proc. 2020, 33, 2792–2794. [Google Scholar] [CrossRef]
- Maleki, E.; Unal, O. Shot peening process effects on metallurgical and mechanical properties of 316 L steel via: Experimental and neural network modeling. Met. Mater. Int. 2021, 27, 262–276. [Google Scholar] [CrossRef]
- Walczak, M.; Szala, M. Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing. Arch. Civ. Mech. Eng. 2021, 21, 157. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, H.; Liu, Y. Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature. Results Phys. 2018, 11, 452–460. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Unal, O.; Bandini, M.; Farrahi, G.H.; Guagliano, M. Introducing gradient severe shot peening as a novel mechanical surface treatment. Sci. Rep. 2021, 11, 22035. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.P.; Swanson, P.T.; Page, C.J. Laser shock peening and mechanical shot peening processes applicable for the surface treatment of technical grade ceramics: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 639–652. [Google Scholar] [CrossRef]
- Pfeiffer, W.; Frey, T. Advances in shot peening of silicon nitride ceramics. In Proceedings of the International Conference and Exhibition on Shot Peening, ICSP9, Paris, France, 6–9 September 2005; pp. 326–331. [Google Scholar]
- Frey, T.; Pfeiffer, W. Shot peening of ceramics: Damage or benefit. Ceram Forum Int. 2006, 79, 187–190. [Google Scholar]
- Hassani-Gangaraj, S.; Moridi, A.; Guagliano, M.; Ghidini, A.; Boniardi, M. The effect of nitriding, severe shot peening and their combination on the fatigue behavior and micro-structure of a low-alloy steel. Int. J. Fatigue 2014, 62, 67–76. [Google Scholar] [CrossRef]
- Sherafatnia, K.; Farrahi, G.H.; Mahmoudi, A.H. Effect of initial surface treatment on shot peening residual stress field: Analytical approach with experimental verification. Int. J. Mech. Sci. 2018, 137, 171–181. [Google Scholar] [CrossRef]
- Rifat, M.; DeMeter, E.C.; Basu, S. Microstructure evolution during indentation of Inconel-718 created by additive manufacturing. Mater. Sci. Eng. A 2020, 781, 139204. [Google Scholar] [CrossRef]
- Zhao, C.; Shi, C.; Wang, Q.; Zhao, C.; Gao, Y.; Yang, Q. Residual stress field of high-strength steel after shot peening by numerical simulation. J. Mater. Eng. Perform. 2020, 29, 358–364. [Google Scholar] [CrossRef]
- Basu, S.; Wang, Z.; Saldana, C. Deformation heterogeneity and texture in surface severe plastic deformation of copper. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20150486. [Google Scholar] [CrossRef]
- Basu, S.; Wang, Z.; Saldana, C. Crystallographic textures produced during sand blasting. Int. Manuf. Sci. Eng. Conf. 2015, 56833, V002T01A006. [Google Scholar]
- Hatamleh, O.; DeWald, A. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints. J. Mater. Process. Technol. 2009, 209, 4822–4829. [Google Scholar] [CrossRef]
- Sidhom, N.; Laamouri, A.; Fathallah, R.; Braham, C.; Lieurade, H. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: Experimental characterization and predictive approach. Int. J. Fatigue 2005, 27, 729–745. [Google Scholar] [CrossRef]
- Arifvianto, B.; Mahardika, M.; Dewo, P.; Iswanto, P.; Salim, U.A. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L. Mater. Chem. Phys. 2011, 125, 418–426. [Google Scholar] [CrossRef]
- Arifvianto, B.; Mahardika, M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Appl. Surf. Sci. 2012, 258, 4538–4543. [Google Scholar] [CrossRef]
- Xu, Z.; Dunleavey, J.; Antar, M.; Hood, R.; Soo, S.; Kucukturk, G.; Hyde, C.; Clare, A. The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes. Int. J. Fatigue 2018, 111, 196–207. [Google Scholar] [CrossRef]
- Shivpuri, R.; Cheng, X.; Mao, Y. Elasto-plastic pseudo-dynamic numerical model for the design of shot peening process parameters. Mater. Des. 2009, 30, 3112–3120. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit. Manuf. 2021, 37, 101619. [Google Scholar] [CrossRef]
- Kahlin, M.; Ansell, H.; Basu, D.; Kerwin, A.; Newton, L.; Smith, B.; Moverare, J. Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int. J. Fatigue 2020, 134, 105497. [Google Scholar] [CrossRef]
- Manogharan, G.; Wysk, R.A.; Harrysson, O.L. Additive manufacturing–integrated hybrid manufacturing and subtractive processes: Economic model and analysis. Int. J. Comput. Integr. Manuf. 2016, 29, 473–488. [Google Scholar] [CrossRef]
- Zhang, L.C.; Liu, Y.; Li, S.; Hao, Y. Additive manufacturing of titanium alloys by electron beam melting: A review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Fousová, M.; Vojtěch, D.; Doubrava, K.; Daniel, M.; Lin, C.F. Influence of inherent surface and internal defects on mechanical properties of additively manufactured Ti6Al4V alloy: Comparison between selective laser melting and electron beam melting. Materials 2018, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoletto, G.; Konečná, R.; Frkáň, M.; Riva, E. Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V. Int. J. Fatigue 2018, 116, 140–148. [Google Scholar] [CrossRef]
- Maizza, G.; Caporale, A.; Polley, C.; Seitz, H. Micro-macro relationship between microstructure, porosity, mechanical properties, and build mode parameters of a selective-electron-beam-melted Ti-6Al-4V alloy. Metals 2019, 9, 786. [Google Scholar] [CrossRef] [Green Version]
- Covarrubias, E.E.; Eshraghi, M. Effect of build angle on surface properties of nickel superalloys processed by selective laser melting. JOM 2018, 70, 336–342. [Google Scholar] [CrossRef]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013, 213, 589–597. [Google Scholar] [CrossRef]
- Ni, C.; Shi, Y.; Liu, J. Effects of inclination angle on surface roughness and corrosion properties of selective laser melted 316L stainless steel. Mater. Res. Express 2018, 6, 036505. [Google Scholar] [CrossRef]
- Shanbhag, G.; Wheat, E.; Moylan, S.; Vlasea, M. Effect of specimen geometry and orientation on tensile properties of Ti-6Al-4V manufactured by electron beam powder bed fusion. Addit. Manuf. 2021, 48, 102366. [Google Scholar] [CrossRef]
- Soyama, H.; Macodiyo, D. Fatigue strength improvement of gears using cavitation shotless peening. Tribol. Lett. 2005, 18, 181–184. [Google Scholar] [CrossRef]
- Wang, T.; Yu, J.; Dong, B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surf. Coat. Technol. 2006, 200, 4777–4781. [Google Scholar] [CrossRef]
- Azar, V.; Hashemi, B.; Yazdi, M.R. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution. Surf. Coat. Technol. 2010, 204, 3546–3551. [Google Scholar] [CrossRef]
- Ren, X.; Li, H.; Guo, H.; Shen, F.; Qin, C.; Zhao, E.; Fang, X. A comparative study on mechanical properties of Ti–6Al–4V alloy processed by additive manufacturing vs. traditional processing. Mater. Sci. Eng. A 2021, 817, 141384. [Google Scholar] [CrossRef]
- Ahn, J.; He, E.; Chen, L.; Wimpory, R.; Dear, J.; Davies, C. Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation. Mater. Des. 2017, 115, 441–457. [Google Scholar] [CrossRef]
- Noyan, I.C.; Cohen, J.B. Residual Stress: Measurement by Diffraction and Interpretation; Springer: New York, NY, USA, 2013. [Google Scholar]
- Gregory, K. Failure Modeling of Titanium Ti6Al-4V and Aluminum 2024-T3 with the Johnson-Cook Material Model; Department of Transportation Federal Aviation Administration: Livermore, CA, USA, 2003.
- He, B.B. Two-Dimensional X-ray Diffraction; Wiley Online Library: Hoboken, NJ, USA, 2009; Volume 2. [Google Scholar]
- Alamos, F.J.; Philo, M.; Go, D.B.; Schmid, S.R. Asperity contact under creep conditions. Tribol. Int. 2021, 160, 107039. [Google Scholar] [CrossRef]
- Montanari, R.; Costanza, G.; Tata, M.; Testani, C. Lattice expansion of Ti–6Al–4V by nitrogen and oxygen absorption. Mater. Charact. 2008, 59, 334–337. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, J.; Wretland, A.; Berglund, J.; Beno, T. Surface integrity after post processing of EDM processed Inconel 718 shaft. Int. J. Adv. Manuf. Technol. 2018, 95, 2325–2337. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.; Vorspohl, J.; Frerichs, F.; Klink, A.; Meinke, M.; Schröder, W.; Lübben, T. Investigation on residual stress induced by multiple EDM discharges. Procedia CIRP 2021, 102, 482–487. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.P. Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 295, 300–319. [Google Scholar]
- Chang, W.R.; Ling, F.F. Normal impact model of rough surfaces. J. Tribol. 1992, 114, 439–447. [Google Scholar] [CrossRef]
- Kalin, M.; Pogačnik, A.; Etsion, I.; Raeymaekers, B. Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods. Tribol. Int. 2016, 93, 137–141. [Google Scholar] [CrossRef] [Green Version]
- McCool, J.I. Relating profile instrument measurements to the functional performance of rough surfaces. J. Tribol. 1987, 109, 264–270. [Google Scholar] [CrossRef]
- Kenmotsu, K. Surfaces with Constant Mean Curvature; American Mathematical Soc.: Providence, RI, USA, 2003; Number 221. [Google Scholar]
- Choi, G.; Dudte, L.H.; Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 2019, 18, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Rifat, M.; Saldana, C.; Basu, S. Quantifying the spread in crystallographic textures due to transients in strain path in shot-peening. Materialia 2018, 2, 231–249. [Google Scholar] [CrossRef]
- Song, X.; Liu, W.; Belnoue, J.; Dong, J.; Wu, G.; Ding, W.; Kimber, S.; Buslaps, T.; Lunt, A.; Korsunsky, A. An eigenstrain-based finite element model and the evolution of shot peening residual stresses during fatigue of GW103 magnesium alloy. Int. J. Fatigue 2012, 42, 284–295. [Google Scholar] [CrossRef]
- Klemenz, M.; Schulze, V.; Rohr, I.; Löhe, D. Application of the FEM for the prediction of the surface layer characteristics after shot peening. J. Mater. Process. Technol. 2009, 209, 4093–4102. [Google Scholar] [CrossRef]
- Astaraee, A.H.; Bagherifard, S.; Bradanini, A.; Duó, P.; Henze, S.; Taylor, B.; Guagliano, M. Application of shot peening to case-hardened steel gears: The effect of gradient material properties and component geometry. Surf. Coat. Technol. 2020, 398, 126084. [Google Scholar] [CrossRef]
- Majzoobi, G.; Azizi, R.; Nia, A.A. A three-dimensional simulation of shot peening process using multiple shot impacts. J. Mater. Process. Technol. 2005, 164, 1226–1234. [Google Scholar] [CrossRef]
- Rifat, M.; Basu, S. Deformation Behavior of Grains Near Defects in Direct Metal Laser Sintered Inconel 718 During Indentation. Int. Manuf. Sci. Eng. Conf. 2020, 84256, V001T01A042. [Google Scholar]
- Khanolkar, P.M.; McComb, C.C.; Basu, S. Predicting elastic strain fields in defective microstructures using image colorization algorithms. Comput. Mater. Sci. 2021, 186, 110068. [Google Scholar] [CrossRef]
- Jiang, P.; Edward, C.; Basu, S. The influence of defects on the elastic response of lattice structures resulting from additive manufacturing. Comput. Mater. Sci. 2021, 199, 110716. [Google Scholar] [CrossRef]
- Ganesh, P.; Sundar, R.; Kumar, H.; Kaul, R.; Ranganathan, K.; Hedaoo, P.; Tiwari, P.; Kukreja, L.; Oak, S.; Dasari, S.; et al. Studies on laser peening of spring steel for automotive applications. Opt. Lasers Eng. 2012, 50, 678–686. [Google Scholar] [CrossRef]
Roughness Parameter | (m) | (m) | (m) | Res. Stress (MPa) | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | |
Sample 1, cf. Figure 1a | ||||||||
As-received | 5.35 | 2.28 | 6.46 | 2.88 | 36.54 | 25.91 | −345.07 | −517.60 |
EDM | 3.90 | 1.87 | 4.78 | 2.43 | 27.26 | 25.84 | 159.75 | −517.60 |
Sample 2, cf. Figure 1b | ||||||||
As-received | 68.08 | 15.78 | 58.18 | 19.73 | 346.48 | 109.25 | −121.41 | −479.26 |
Surface Condition | x Direction | y Direction | ||
---|---|---|---|---|
Radius of Curvature R (m) | Plasticity Index | Radius of Curvature R (m) | Plasticity Index | |
as-received | 0.09 | 251.50 | 0.67 | 163.19 |
EDM | 0.18 | 88.64 | 0.19 | 87.06 |
as-received | 0.03 | 716.22 | 0.03 | 715.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifat, M.; Basu, S.; De Meter, E.C.; Manogharan, G. Effect of Prior Surface Textures on the Resulting Roughness and Residual Stress during Bead-Blasting of Electron Beam Melted Ti-6Al-4V. Crystals 2022, 12, 374. https://doi.org/10.3390/cryst12030374
Rifat M, Basu S, De Meter EC, Manogharan G. Effect of Prior Surface Textures on the Resulting Roughness and Residual Stress during Bead-Blasting of Electron Beam Melted Ti-6Al-4V. Crystals. 2022; 12(3):374. https://doi.org/10.3390/cryst12030374
Chicago/Turabian StyleRifat, Mustafa, Saurabh Basu, Edward C. De Meter, and Guha Manogharan. 2022. "Effect of Prior Surface Textures on the Resulting Roughness and Residual Stress during Bead-Blasting of Electron Beam Melted Ti-6Al-4V" Crystals 12, no. 3: 374. https://doi.org/10.3390/cryst12030374
APA StyleRifat, M., Basu, S., De Meter, E. C., & Manogharan, G. (2022). Effect of Prior Surface Textures on the Resulting Roughness and Residual Stress during Bead-Blasting of Electron Beam Melted Ti-6Al-4V. Crystals, 12(3), 374. https://doi.org/10.3390/cryst12030374