New Insights into Coloration Mechanism in Violet-Red Pyrope-Almandine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Elecron Microprobe
2.3. UV-Visible Spectroscopy
2.4. IR Spectroscopy
2.5. Color Measurement Instrument
3. Results
3.1. Electron Microprobe
3.2. UV-Visible Spectrum
3.3. IR Spectroscopy
3.4. Color Quantization
4. Discussion
4.1. Chemical Compositions Variation and the Influence on Color
4.2. Four Types of Pyrope-Almandine
- I.
- Medium Fe, High Mn (FeO ≈ 6–11 wt%; MnO ≈ 3–8 wt%);
- II.
- Medium-High Fe, Low Mn (FeO ≈ 11–23 wt%; MnO ≈ 1–3 wt%);
- III.
- Medium Fe, Extremely Low Mn (FeO ≈ 13–18 wt%; MnO ≈ 0–1 wt%);
- IV.
- High Fe, Extremely Low Mn (FeO ≈ 18–21 wt%; MnO ≈ 0–1 wt%)
4.3. IR Spectrum and the Chemical Composition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sibi, N.; Subodh, G. Structural and Microstructural Correlations of Physical Properties in Natural Almandine-Pyrope Solid Solution: Al70Py29. J. Electron. Mater. 2017, 46, 6947–6956. [Google Scholar] [CrossRef] [Green Version]
- Novak, G.A.; Gibbs, G.V. The Crystal Chemistry of the Silicate Garnets. Am. Mineral. 1971, 56, 791–825. [Google Scholar]
- Geiger, C.A. A tale of two garnets: The role of solid solution in the development toward a modern mineralogy. Am. Mineral. 2016, 101, 1735–1749. [Google Scholar] [CrossRef]
- Akizuki, M. Growth structure and crystal symmetry of grossular garnets from the Jeffrey Mine, Asbestos, Quebec, Canada. Am. Mineral. 1989, 74, 859–864. [Google Scholar]
- Tarte, P.; Deliens, M. Correlations between the infrared spectrum and the composition of garnets in the pyrope-almandine-spessartine series. Contrib. Mineral. Petrol. 1973, 40, 25–37. [Google Scholar] [CrossRef]
- Adamo, I.; Pavese, A.; Prosperi, L.; Diella, V.; Ajò, D. Gem-quality garnets: Correlations between gemmological properties, chemical composition and infrared spectroscopy. J. Gemmol. 2007, 30, 307–319. [Google Scholar] [CrossRef]
- Hoover, D.B. Determining Garnet Composition from Magnetic Susceptibility and Other Properties. Gems Gemol. 2011, 47, 272–275. [Google Scholar] [CrossRef]
- Runciman, W.A.; Marc, M. The magnetic circular dichroism of pyrope-almandine garnets. Am. Mineral. 1975, 60, 1122–1124. [Google Scholar]
- Manning, P.G. The optical absorption spectra of the garnets almandine-pyrope, pyrope and spessartine and some structural interpretations of mineralogical significance. Can. Mineral. 1967, 9, 237–251. [Google Scholar]
- Yu, X.Y.; Long, Z.Y.; Zhang, Y.; Qin, L.J.; Zhang, C.; Xie, Z.R.; Wu, Y.R.; Yan, Y.; Wu, M.K.; Wan, J.X. Overview of Gemstone Resources in China. Crystals 2021, 11, 1189. [Google Scholar] [CrossRef]
- Manson, D.V.; Stockton, C.M. Pyrope-spessartine garnets with unusual color behavior. Gems Gemol. 1984, 20, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Krzemnicki, M.S.; Hänni, H.A.; Reusser, E. Colour-change garnets from Madagascar: Comparison of colorimetric with chemical data. J. Gemmol. 2001, 27, 200–207. [Google Scholar] [CrossRef]
- Venkateswarulu, P.; Rao, K.S.; Kasipathi, C.; Ramakrishna, Y. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques. Appl. Radiat. Isot. 2012, 70, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Schmetzer, K.; Hainschwang, T.; Kiefert, L.; Bernhardt, H.J. Pink to Pinkish Orange Malaya Garnets from Bekily, Madagascar. Gems Gemol. 2001, 37, 296–308. [Google Scholar] [CrossRef]
- Moore, R.K.; White, W.B. Electronic spectra of transition metal ions in silicate garnets. Can. Mineral. 1972, 11, 791–811. [Google Scholar]
- Locock, A.J. An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci. 2008, 34, 1769–1780. [Google Scholar] [CrossRef]
- Merkel, P.B.; Breeding, C.M. Spectral differentiation between copper and iron colorants in gem tourmalines. Gems Gemol. 2009, 45, 112–119. [Google Scholar] [CrossRef]
- Krambrock, K.; Guimarães, F.S.; Pinheiro, M.V.B.; Paniago, R.; Righi, A.; Persiano, A.I.C.; Karfunkel, J.; Hoover, D.B. Purplish-red almandine garnets with alexandrite-like effect: Causes of colors and color-enhancing treatments. Phys. Chem. Miner. 2013, 40, 555–562. [Google Scholar] [CrossRef]
- Eeckhout, S.G.; Castañeda, C.; Ferreira, A.C.M.; Sabioni, A.C.S.; Grave, E.D.; Vasconcelos, D.C.L. Spectroscopic studies of spessartine from Brazilian pegmatites. Am. Mineral. 2002, 87, 1297–1306. [Google Scholar] [CrossRef]
- Geiger, C.A. A powder infrared spectroscopic investigation of garnet binaries in the system Mg3Al2Si3O12-Fe3Al2Si3O12-Mn3Al2Si3O12-Ca3Al2Si3O12. Eur. J. Mineral. 1998, 3, 407–422. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Chopelas, A. Vibrational spectroscopy of end-member silicate garnets. Phys. Chem. Miner. 1990, 17, 503–526. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Palke, A.C.; Renfro, N. Vanadium and Chromium-bearing pink pyrope garnet: Characterization and quantitative colorimetric analysis. Gems Gemol. 2015, 51, 348–369. [Google Scholar] [CrossRef] [Green Version]
- Carstens, H. The red-green change in chromium-bearing garnets. Contrib. Mineral. Petrol. 1973, 41, 273–276. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ottonello, G.; Bokreta, M.; Sciuto, P.F. Parameterization of energy and interactions in garnets: End-member properties. Am. Mineral. 2015, 81, 429–447. [Google Scholar] [CrossRef]
- Moore, R.K.; White, W.B.; Long, T.V. Vibrational spectra of the common silicates: I. The garnets. Am. Mineral. 1971, 56, 54–71. [Google Scholar]
- Hofmeister, A.M.; Fagan, T.J.; Campbell, K.M. Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Me and Ca. Am. Mineral. 1996, 81, 418–429. [Google Scholar] [CrossRef]
Samples Number | Weight (g) | SG | RI | Color |
---|---|---|---|---|
P1 | 0.332 | 3.851 | 1.763 | Purple |
P2 | 0.267 | 3.874 | 1.764 | Purple |
P3 | 0.239 | 3.789 | 1.743 | Light purple |
P4 | 0.243 | 3.751 | 1.745 | Light purple |
P5 | 0.187 | 3.809 | 1.747 | Light purple |
P7 | 0.288 | 3.914 | 1.770 | Deep purple |
P11 | 0.389 | 3.875 | 1.756 | Deep reddish purple |
P15 | 0.389 | 3.821 | 1.755 | Deep reddish purple |
P20 | 0.417 | 3.745 | 1.745 | Reddish purple |
R1 | 0.237 | 3.839 | 1.756 | Purplish red |
R3 | 0.235 | 3.830 | 1.761 | Purplish red |
R10 | 0.338 | 3.867 | 1.767 | Deep purplish red |
R12 | 0.371 | 3.782 | 1.752 | Deep purplish red |
R15 | 0.310 | 3.771 | 1.749 | Light purplish red |
R16 | 0.277 | 3.788 | 1.744 | Red |
R26 | 0.235 | 3.986 | 1.773 | Deep red |
Sample Number | P1 | P2 | P3 | P4 | P5 | P7 | P11 | P15 | P20 | R1 | R3 | R10 | R12 | R15 | R16 | R26 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxide/(wt%) | ||||||||||||||||
SiO2 | 39.88 | 40.39 | 41.20 | 41.88 | 40.99 | 39.33 | 40.34 | 40.27 | 41.49 | 40.66 | 40.07 | 40.54 | 41.43 | 41.05 | 41.85 | 39.46 |
TiO2 | 0.00 | 0.00 | 0.03 | 0.04 | 0.00 | 0.02 | 0.04 | 0.03 | 0.00 | 0.04 | 0.08 | 0.07 | 0.04 | 0.06 | 0.03 | 0.00 |
Al2O3 | 23.17 | 23.15 | 23.51 | 24.12 | 23.27 | 22.58 | 23.29 | 22.91 | 23.08 | 22.98 | 23.38 | 22.68 | 23.09 | 23.07 | 23.67 | 22.18 |
Cr2O3 | 0.00 | 0.02 | 0.13 | 0.10 | 0.08 | 0.00 | 0.05 | 0.03 | 0.03 | 0.03 | 0.04 | 0.07 | 0.04 | 0.08 | 0.01 | 0.00 |
FeO | 18.39 | 20.10 | 7.69 | 6.77 | 8.24 | 21.19 | 15.34 | 14.25 | 11.80 | 15.49 | 17.16 | 20.38 | 14.09 | 11.48 | 13.44 | 21.99 |
MnO | 0.47 | 0.17 | 5.29 | 7.70 | 5.37 | 0.49 | 1.07 | 3.01 | 1.85 | 0.45 | 2.58 | 1.66 | 1.10 | 3.52 | 0.11 | 1.07 |
MgO | 15.98 | 15.58 | 19.82 | 18.14 | 19.08 | 12.56 | 16.85 | 14.90 | 19.41 | 15.98 | 15.10 | 12.82 | 18.59 | 16.88 | 18.91 | 9.76 |
CaO | 0.97 | 0.70 | 1.99 | 1.46 | 1.61 | 1.19 | 1.36 | 2.61 | 1.35 | 3.86 | 1.63 | 1.17 | 1.71 | 2.28 | 0.96 | 3.57 |
Tatol | 98.86 | 100.11 | 99.66 | 100.21 | 98.64 | 97.36 | 98.34 | 98.01 | 99.01 | 99.49 | 100.04 | 99.39 | 100.09 | 98.42 | 98.98 | 98.03 |
Atomic proportions based on X + Y + Si = 8 apfu | ||||||||||||||||
Si | 2.97 | 2.98 | 2.96 | 3.00 | 2.98 | 3.01 | 2.98 | 3.01 | 3.00 | 2.99 | 2.96 | 3.04 | 2.99 | 3.02 | 3.02 | 3.04 |
Ti | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 2.03 | 2.01 | 1.99 | 2.04 | 2.00 | 2.04 | 2.03 | 2.02 | 1.97 | 1.99 | 2.04 | 2.00 | 1.96 | 2.00 | 2.02 | 2.01 |
Cr | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Fe3+ | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
Fe2+ | 1.14 | 1.24 | 0.44 | 0.41 | 0.49 | 1.36 | 0.95 | 0.89 | 0.69 | 0.93 | 1.06 | 1.28 | 0.81 | 0.71 | 0.81 | 1.42 |
Mn | 0.03 | 0.01 | 0.32 | 0.47 | 0.33 | 0.03 | 0.07 | 0.19 | 0.11 | 0.03 | 0.16 | 0.11 | 0.07 | 0.22 | 0.01 | 0.07 |
Mg | 1.77 | 1.71 | 2.12 | 1.94 | 2.07 | 1.43 | 1.86 | 1.66 | 2.09 | 1.75 | 1.66 | 1.43 | 2.00 | 1.85 | 2.04 | 1.12 |
Ca | 0.08 | 0.06 | 0.15 | 0.11 | 0.13 | 0.10 | 0.11 | 0.21 | 0.11 | 0.30 | 0.13 | 0.09 | 0.13 | 0.18 | 0.07 | 0.30 |
Absorption Peaks | Fe2+ | Mn2+ | V3+/Cr3+ |
---|---|---|---|
410 nm | - | √ | - |
424 nm | - | √ | - |
460 nm | √ | - | - |
503 nm | √ | - | - |
523 nm | √ | √ | - |
572 nm | √ | - | √ |
610 nm | √ | - | - |
687 nm | √ | - | - |
Sample Num. | L* | C* | ho | Color Simulation |
---|---|---|---|---|
P1 | 23.82 | 45.18 | 334.48 | |
P2 | 28.30 | 52.63 | 331.91 | |
P3 | 24.82 | 36.87 | 350.39 | |
P4 | 55.54 | 34.97 | 352.38 | |
P5 | 38.77 | 21.38 | 355.79 | |
P7 | 23.17 | 44.10 | 338.84 | |
P11 | 28.16 | 43.16 | 355.11 | |
P15 | 17.81 | 33.28 | 359.15 | |
P20 | 36.94 | 40.34 | 345.08 | |
R1 | 23.65 | 35.42 | 13.06 | |
R3 | 13.24 | 25.00 | 6.14 | |
R10 | 16.63 | 36.29 | 4.42 | |
R12 | 30.18 | 49.17 | 1.88 | |
R15 | 26.79 | 19.43 | 0.11 | |
R16 | 33.26 | 51.86 | 31.17 | |
R26 | 10.29 | 37.31 | 6.86 |
Type | I | II | III | IV |
---|---|---|---|---|
Color | Light purple | Purplish red-red | Red | Purple-fancy purple |
Lightness range | 26.79–55.54 | 10.29–36.94 | 33.26 | 23.82–28.30 |
Chrome range | 19.43–34.97 | 25.00–43.16 | 51.86 | 45.78–52.63 |
Hue range | 352.38–0.11 | 345.08–6.86 | 31.17 | 331.91–334.48 |
Dominated ion | Mn2+ | Mn2+ | Mn2+/Fe2+ | Fe2+ |
Absorption in purple region | Strong absorption | Strong absorption | Weak absorption | Weak absorption |
Absorption in blue region | Weak absorption | Increase | Increase | Strong absorption |
Absorption in yellow-green region | Strong absorption | Strong absorption | Strong absorption | Strong absorption |
Absorption in orange-red region | Weak absorption | Increase | Increase | Strong absorption |
Content of Mn2+ | high | Low | Extremely low | Extremely low |
Content of Fe2+ | Medium | Medium-High | Medium | High |
Color cause | Red + blue → light purple | Left the red lights | Depending on which light has more left, red or purple | Absorb almost all color light except purple |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Guo, Y. New Insights into Coloration Mechanism in Violet-Red Pyrope-Almandine. Crystals 2022, 12, 379. https://doi.org/10.3390/cryst12030379
Yang P, Guo Y. New Insights into Coloration Mechanism in Violet-Red Pyrope-Almandine. Crystals. 2022; 12(3):379. https://doi.org/10.3390/cryst12030379
Chicago/Turabian StyleYang, Puyue, and Ying Guo. 2022. "New Insights into Coloration Mechanism in Violet-Red Pyrope-Almandine" Crystals 12, no. 3: 379. https://doi.org/10.3390/cryst12030379
APA StyleYang, P., & Guo, Y. (2022). New Insights into Coloration Mechanism in Violet-Red Pyrope-Almandine. Crystals, 12(3), 379. https://doi.org/10.3390/cryst12030379