Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Depth of the PhC Holes
3.2. Investigating the Radius of PhC Holes with Holes Extending up to the First DBR Layer
3.3. Investigating the Number of PhC Elements with Holes Extending up to the Third DBR-Layer
3.4. Spectral Tuning of Finite DBR-PhC Structure with N = 25 and Variation in Hole Radius
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, R.; Wang, S.S. New Principle for Optical Filters. Appl. Phys. Lett. 1992, 61, 1022–1024. [Google Scholar] [CrossRef]
- Koshiba, M.; Tsuji, Y.; Hikari, M. Time-domain beam propagation method and its application to photonic crystal circuits. J. Lightwave Technol. 2000, 18, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Istock, A.; Zaman, A.; Woidt, C.; Hillmer, H. Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology. Appl. Nanosci. 2018, 8, 1415–1425. [Google Scholar] [CrossRef]
- Rybin, M.V.; Khanikaev, A.B.; Inoue, M.; Samusev, K.B.; Steel, M.J.; Yushin, G.; Limonov, M.F. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 2009, 103, 23901. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Joannopoulos, J.D. Analysis of Guided Resonances in Photonic Crystal Slabs. Phys. Rev. B 2002, 65, 235112. [Google Scholar] [CrossRef] [Green Version]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano Resonances in Photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Khan, Y.; Rehman, A.U.; Batool, B.A.; Noor, M.; Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Fabrication and Investigation of Spectral Properties of a Dielectric Slab Waveguide Photonic Crystal Based Fano-Filter. Crystals 2022, 12, 226. [Google Scholar] [CrossRef]
- Shuai, Y.; Zhao, D.; Tian, Z.; Seo, J.H.; Plant, D.V.; Ma, Z.; Fan, S.; Zhou, W. Double-layer Fano resonance photonic crystal filters. Opt. Express 2013, 21, 24582–24589. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Recent Advances in Photonic Crystal Optical Devices: A Review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Vlasov, Y.A.; O’boyle, M.; Hamann, H.F.; McNab, S.J. Active control of slow light on a chip with photonic crystal waveguides. Nature 2005, 438, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Fariborz, P.; Malmir, M.R. Reconfigurable All Optical Half Adder and Optical XOR and AND Logic Gates Based on 2D Photonic Crystals. Opt. Quantum Electron. 2020, 52, 1–8. [Google Scholar]
- Baker, J.E.; Sriram, R.; Miller, B.L. Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab Chip 2015, 15, 971–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horie, Y.; Arbabi, A.; Arbabi, E.; Kamali, S.M.; Faraon, A. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures. Opt. Express 2016, 24, 11677–11682. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.; Lin, G.; Pan, C.-H. Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers. Opt. Express 2017, 25, 32697–32704. [Google Scholar] [CrossRef]
- Li, Z.L.; Lin, S.C.; Lin, G.; Cheng, H.W.; Sun, K.W.; Lee, C.P. Effect of etching depth on threshold characteristics of GaSb-based middle infrared photonic-crystal surface-emitting lasers. Micromachines 2019, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Amiri, I.S.; Zakaria, R.; Yupapin, P. Manipulating of nanometer spacing dual-wavelength by controlling the apodized grating depth in microring resonators. Results Phys. 2019, 12, 32–37. [Google Scholar] [CrossRef]
- Kusserow, T.; Khan, Y.; Zamora, R.; Messow, F.; Hillmer, H. Guided-mode resonances in dielectric photonic crystal slabs with low index contrast. In Proceedings of the 2012 International Conference on Optical MEMS and Nanophotonics, Banff, AB, Canada, 6–9 August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 170–171. [Google Scholar]
- Zhang, H.; Zhu, H.; Qian, L.; Fan, D. Analysis of leaky modes of photonic crystal slabs with deeply patterned lattice. J. Opt. A Pure Appl. Opt. 2006, 8, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Baghbadorani, H.K.; Aurelio, D.; Barvestani, J.; Liscidini, M. Guided modes in photonic crystal slabs supporting Bloch surface waves. J. Opt. Soc. Am. B 2018, 35, 805–810. [Google Scholar] [CrossRef]
- Taimoor, M.; Reuter, S.; Hillmer, H.; Kusserow, T. Narrowband optical thin-film filters with distributed cavity modes. Appl. Phys. A 2016, 122, 1–5. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Xu, C.; Kan, Q.; Wang, C.X.; Chen, H.D. Lowering the threshold current of photonic crystal vertical-cavity surface-emitting lasers. Iraqi J. Appl. Phys. 2013, 21. [Google Scholar] [CrossRef]
- Czyszanowski, T.; Dems, M.; Thienpont, H.; Panajotov, K. Optimal radii of photonic crystal holes within DBR mirrors in long wavelength VCSEL. Opt. Express 2007, 15, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Painter, O.; Lee, R.K.; Scherer, A.; Yariv, A.; O’brien, J.D.; Dapkus, P.D.; Kim, I. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Liu, Q.H. Extraordinary enhancement of second harmonic generation in a periodically patterned distributed Bragg reflector. J. Opt. Soc. Am. B 2015, 32, 1193–1201. [Google Scholar] [CrossRef]
- Burr, G.W.; Diziain, S.; Bernal, M.P. The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals. Opt. Express 2008, 16, 6302–6316. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.; Fiers, M.; Nizamov, S.; Tassaert, M.; Johnson, S.G.; Bienstman, P.; Bogaerts, W. Python Bindings for the Open-Source Electromagnetic Simulator Meep. Comput. Sci. Eng. 2010, 13, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. Meep: A Flexible Free-Software Package for Electromagnetic Simulations by the FDTD Method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
Radius (a) | Resonant Peak Reflection (%) | FWHM (μm) | FSR (μm) | Finesse |
---|---|---|---|---|
0.10 | 53% | 0.022 | 0.433 | 4.863 |
0.14 | 70% | 0.021 | 0.9824 | 8.757 |
0.18 | 76% | 0.016 | 3.07812 | 11.405 |
0.20 | 65% | 0.018 | 0.86172 | 7.232 |
0.23 | 59% | 0.019 | 0.4411 | 5.882 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, U.; Khan, Y.; Ehsan, M.K.; Amirzada, M.R.; Ullah, N.; Khatri, A.R.; Ur Rehman, A.; Butt, M.A. Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application. Crystals 2022, 12, 409. https://doi.org/10.3390/cryst12030409
Ahmed U, Khan Y, Ehsan MK, Amirzada MR, Ullah N, Khatri AR, Ur Rehman A, Butt MA. Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application. Crystals. 2022; 12(3):409. https://doi.org/10.3390/cryst12030409
Chicago/Turabian StyleAhmed, Umair, Yousuf Khan, Muhammad Khurram Ehsan, Muhammad Rizwan Amirzada, Naqeeb Ullah, Abdul Rafay Khatri, Atiq Ur Rehman, and Muhammad A. Butt. 2022. "Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application" Crystals 12, no. 3: 409. https://doi.org/10.3390/cryst12030409
APA StyleAhmed, U., Khan, Y., Ehsan, M. K., Amirzada, M. R., Ullah, N., Khatri, A. R., Ur Rehman, A., & Butt, M. A. (2022). Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application. Crystals, 12(3), 409. https://doi.org/10.3390/cryst12030409