Synthesis, Molecular Structure, Thermal and Spectroscopic Analysis of a Novel Bromochalcone Derivative with Larvicidal Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Crystallization
2.2. Spectroscopic and Thermal Characterization
2.3. X-ray Diffraction Analysis
2.4. Theoretical Analysis
2.5. Larvicidal Assays
3. Results
3.1. Synthesis and Crystallization
3.2. Structural Analysis
3.3. Larvicidal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cox, C.D.; Breslin, M.J.; Mariano, B.J. Two-Step Synthesis of β-Alkyl Chalcones and Their Use in the Synthesis of 3,5-Diaryl-5-Alkyl-4,5-Dihydropyrazoles. Tetrahedron Lett. 2004, 45, 1489–1493. [Google Scholar] [CrossRef]
- Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone Derivatives and Their Antibacterial Activities: Current Development. Bioorganic Chem. 2019, 91, 103133. [Google Scholar] [CrossRef] [PubMed]
- Ngaini, Z.; Haris Fadzillah, S.M.; Hussain, H. Synthesis and Antimicrobial Studies of Hydroxylated Chalcone Derivatives with Variable Chain Length. Nat. Prod. Res. 2012, 26, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Stepanić, V.; Matijašić, M.; Horvat, T.; Verbanac, D.; Chlupáćová, M.K.; Saso, L.; Žarković, N. Antioxidant Activities of Alkyl Substituted Pyrazine Derivatives of Chalcones—In Vitro and in Silico Study. Antioxidants 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, P.T.; da Cunha Xavier, J.; Freitas, T.S.; Oliveira, M.M.; Coutinho, H.D.M.; Leal, A.L.A.B.; Barreto, H.M.; Bandeira, P.N.; Nogueira, C.E.S.; Sena, D.M.; et al. Synthesis, Spectroscopic Characterization and Antibacterial Evaluation by Chalcones Derived of Acetophenone Isolated from Croton Anisodontus Müll.Arg. J. Mol. Struct. 2021, 1226, 129403. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Sung, B.; Aggarwal, B.B. The Role of Chalcones in Suppression of NF-ΚB-Mediated Inflammation and Cancer. Int. Immunopharmacol. 2011, 11, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, Biological Evaluation, and Molecular Modelling of New Naphthalene-Chalcone Derivatives as Potential Anticancer Agents on MCF-7 Breast Cancer Cells by Targeting Tubulin Colchicine Binding Site. J. Enzym. Inhib. Med. Chem. 2020, 35, 139–144. [Google Scholar] [CrossRef]
- Bonakdar, A.P.S.; Vafaei, F.; Farokhpour, M.; Esfahani, M.H.N.; Massah, A.R. Synthesis and Anticancer Activity Assay of Novel Chalcone-Sulfonamide Derivatives. Iran. J. Pharm. Res. 2017, 16, 565–568. [Google Scholar] [CrossRef]
- Mellado, M.; Espinoza, L.; Madrid, A.; Mella, J.; Chávez-Weisser, E.; Diaz, K.; Cuellar, M. Design, Synthesis, Antifungal Activity, and Structure–Activity Relationship Studies of Chalcones and Hybrid Dihydrochromane–Chalcones. Mol. Divers. 2019, 24, 603–615. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Gao, S.; Ma, M.; Ren, G.; Liu, H.; Chen, X. Synthesis and Antifungal Activity of Chalcone Derivatives. Nat. Prod. Res. 2015, 29, 1804–1810. [Google Scholar] [CrossRef]
- Lahsasni, S.A.; Al Korbi, F.H.; Aljaber, N.A.A. Synthesis, Characterization and Evaluation of Antioxidant Activities of Some Novel Chalcones Analogues. Chem. Cent. J. 2014, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Carrillo, J.T.; Díaz-Camacho, S.P.; Delgado-Vargas, F.; Rivero, I.A.; López-Angulo, G.; Sarmiento-Sánchez, J.I.; Montes-Avila, J. Synthesis of Leading Chalcones with High Antiparasitic, against Hymenolepis Nana, and Antioxidant Activities. Braz. J. Pharm. Sci. 2018, 54, 1–13. [Google Scholar] [CrossRef] [Green Version]
- AID 371504—Antiamnesic Activity against Entamoeba Histolytica HMI:IMSS after 72 Hrs by Microdilution Method—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/371504#sid=103590847 (accessed on 29 October 2020).
- Chhabra, M.; Mittal, V.; Bhattacharya, D.; Rana, U.V.S.; Lal, S. Chikungunya Fever: A Re-Emerging Viral Infection. Indian J. Med. Microbiol. 2008, 26, 5–12. [Google Scholar] [CrossRef]
- WHO. Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 18 February 2021).
- Ghosh, A.; Dar, L. Dengue Vaccines: Challenges, Development, Current Status and Prospects. Indian J. Med. Microbiol. 2015, 33, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.B.B.M.; de Oliveira, J.M.; Chagas, J.M.; Rabelo, L.M.A.; de Medeiros, G.F.; Giodani, R.B.; da Silva, E.A.; Uchôa, A.F.; de Fátima de Freire Melo Ximenes, M. Evaluation of Seed Extracts from Plants Found in the Caatinga Biome for the Control of Aedes Aegypti. Parasitol. Res. 2014, 113, 3565–3580. [Google Scholar] [CrossRef] [PubMed]
- Targanski, S.K.; Sousa, J.R.; de Pádua, G.M.S.; de Sousa, J.M.; Vieira, L.C.C.; Soares, M.A. Larvicidal Activity of Substituted Chalcones against Aedes Aegypti (Diptera: Culicidae) and Non-Target Organisms. Pest Manag. Sci. 2021, 77, 325–334. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, H.W.; Fang, Y.; An, S.B.; Park, D.S.; Song, H.H.; Oh, S.R.; Kim, S.Y.; Kim, S.; Kim, N.; et al. Identification of Plant Compounds That Disrupt the Insect Juvenile Hormone Receptor Complex. Proc. Natl. Acad. Sci. USA 2015, 112, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of Selected Plant Essential Oils against the Yellow Fever Mosquito Aedes Aegypti Larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef]
- WHO and Special Programme for research and Training in Tropical Diseases. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009; pp. 1–144. ISBN 9789241547871. [Google Scholar]
- Ternavisk, R.R.; Camargo, A.J.; Machado, F.B.C.; Rocco, J.A.F.F.; Aquino, G.L.B.; Silva, V.H.C.; Napolitano, H.B. Synthesis, Characterization, and Computational Study of a New Dimethoxy-Chalcone. J. Mol. Modeling 2014, 20, 2526. [Google Scholar] [CrossRef]
- Pence, I.; Mahadevan-jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. [Google Scholar] [CrossRef] [Green Version]
- Mitsutake, H.; Poppi, R.J.; Breitkreitz, M.C. Raman Raman Imaging Imaging Spectroscopy: Spectroscopy: History, History, Fundamentals Fundamentals and Current and Current Scenario Scenario of the Oftechnique the Technique. J. Braz. Chem. Soc. 2019, 30, 2243–2258. [Google Scholar] [CrossRef]
- Bolton, E.E.; Wang, Y.; Thiessen, P.A.; Bryant, S.H. Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities; Elsevier B.V.: Amsterdam, The Netherlands, 2008; Volume 4, ISBN 9780444532503. [Google Scholar]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Kanagasabai, S.; Gugan, K.; Reddy, M.B.; Anandhan, R.; Kumar, S.M.; Usharani, S. Crystal Structure and Hirshfeld Surface Analysis of 2,2′-Bi-(3-Phenyl-2H-1,4-Benzothiazine). Chem. Data Collect. 2019, 20, 1564–1567. [Google Scholar] [CrossRef]
- Abad, N.; Ramli, Y.; Hökelek, T.; Sebbar, N.K.; Mague, J.T.; Essassi, E.M. Crystal Structure and Hirshfeld Surface Analysis of Ethyl 2-{4-[(3-Methyl-2-Oxo-1,2-Dihydroquinoxalin- 1-Yl)Methyl]-1H-1,2,3-Triazol-1-Yl}acetate. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 1648–1652. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 2009. Available online: https://gaussian.com/gaussian16/ (accessed on 28 February 2022).
- Custodio, J.M.F.; Michelini, L.J.; De Castro, M.R.C.; Vaz, W.F.; Neves, B.J.; Cravo, P.V.L.; Barreto, F.S.; Filho, M.O.M.; Perez, C.N.; Napolitano, H.B. Structural Insights into a Novel Anticancer Sulfonamide Chalcone. New J. Chem. 2018, 42, 3426–3434. [Google Scholar] [CrossRef]
- Sallum, L.O.; Siqueira, V.L.; Custodio, J.M.F.; Borges, N.M.; Lima, A.P.; Abreu, D.C.; De Lacerda, E.P.S.; Lima, R.S.; De Oliveira, A.M.; Camargo, A.J.; et al. Molecular Modeling of Cytotoxic Activity of a New Terpenoid-like Bischalcone. New J. Chem. 2019, 43, 18451–18460. [Google Scholar] [CrossRef]
- Haroon, M.; Khalid, M.; Akhtar, T.; Tahir, M.N.; Khan, M.U.; Saleem, M.; Jawaria, R. Synthesis, Spectroscopic, SC-XRD Characterizations and DFT Based Studies of Ethyl2-(Substituted-(2-Benzylidenehydrazinyl))Thiazole-4-Carboxylate Derivatives. J. Mol. Struct. 2019, 1187, 164–171. [Google Scholar] [CrossRef]
- Moreira, C.A.; Custódio, J.M.F.; Vaz, W.F.; D’Oliveira, G.D.C.; Noda Perez, C.; Napolitano, H.B. A Comprehensive Study on Crystal Structure of a Novel Sulfonamide-Dihydroquinolinone through Experimental and Theoretical Approaches. J. Mol. Modeling 2019, 25, 205. [Google Scholar] [CrossRef]
- Medina, D.; Menezes, A.C.S.; Sousa, J.E.F.; Oliveira, S.S. Structural and Theoretical Investigation of Anhydrous 3, 4, 5-Triacetoxybenzoic Acid. PLoS ONE 2016, 11, e0158029. [Google Scholar] [CrossRef] [Green Version]
- Merrick, J.P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef]
- Aguiar, A.S.N.; Queiroz, J.E.; Firmino, P.P.; Vaz, W.F.; Camargo, A.J.; de Aquino, G.L.B.; Napolitano, H.B.; Oliveira, S.S. Synthesis, Characterization, and Computational Study of a New Heteroaryl Chalcone. J. Mol. Modeling 2020, 26, 243. [Google Scholar] [CrossRef]
- Millam, R.D.; Todd, A.; Keith John, M. GaussView Version 6. 2019. Available online: https://gaussian.com/gaussview6/ (accessed on 28 February 2022).
- Cottrell, S.J.; Olsson, T.S.G.; Taylor, R.; Cole, J.C.; Liebeschuetz, J.W. Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data. J. Chem. Inf. Modeling 2012, 52, 956–962. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment—Olex2 Dissected. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Custodio, J.M.F.; Gotardo, F.; Vaz, W.F.; D’Oliveira, G.D.C.; de Almeida, L.R.; Fonseca, R.D.; Cocca, L.H.Z.; Perez, C.N.; Oliver, A.G.; de Boni, L.; et al. Benzenesulfonyl Incorporated Chalcones: Synthesis, Structural and Optical Properties. J. Mol. Struct. 2020, 1208, 127845. [Google Scholar] [CrossRef]
- Rajesh Kumar, P.C.; Ravindrachary, V.; Janardhana, K.; Manjunath, H.R.; Karegouda, P.; Crasta, V.; Sridhar, M.A. Optical and Structural Properties of Chalcone NLO Single Crystals. J. Mol. Struct. 2011, 1005, 1–7. [Google Scholar] [CrossRef]
- Rabinovich, D.; Schmidt, G.M.J.; Shaked, Z. Topochemistry. Part XXXIV. Crystal and Molecular Structure of P′-Bromochalcone. J. Chem. Soc. Perkin Trans. 2 1973, 1, 33–37. [Google Scholar] [CrossRef]
- Johnston, R.C.; Cheong, P.H.Y. C-H⋯O Non-Classical Hydrogen Bonding in the Stereomechanics of Organic Transformations: Theory and Recognition. Org. Biomol. Chem. 2013, 11, 5057–5064. [Google Scholar] [CrossRef] [PubMed]
- Vaz, W.F.; Custodio, J.M.F.; D’Oliveira, G.D.C.; Neves, B.J.; Junior, P.S.C.; Filho, J.T.M.; Andrade, C.H.; Perez, C.N.; Silveira-Lacerda, E.P.; Napolitano, H.B. Dihydroquinoline Derivative as a Potential Anticancer Agent: Synthesis, Crystal Structure, and Molecular Modeling Studies. Mol. Divers. 2021, 25, 55–66. [Google Scholar] [CrossRef]
- Mkaouar, I.; Karâa, N.; Hamdi, B.; Zouari, R. Synthesis, Crystal Structure, Thermal Analysis, Vibrational Study Dielectric Behaviour and Hirshfeld Surface Analysis of [C6H10(NH3)2)]2 SnCl6 (Cl)2. J. Mol. Struct. 2016, 1115, 161–170. [Google Scholar] [CrossRef]
- Oliveira, S.S.; Santin, L.G.; Almeida, L.R.; Malaspina, L.A.; Lariucci, C.; Silva, J.F.; Fernandes, W.B.; Aquino, G.L.B.; Gargano, R.; Camargo, A.J.; et al. Synthesis, Characterization, and Computational Study of the Supramolecular Arrangement of a Novel Cinnamic Acid Derivative. J. Mol. Modeling 2017, 23, 35. [Google Scholar] [CrossRef]
- Chidangil, S.; Shukla, M.K.; Mishra, P.C. A Molecular Electrostatic Potential Mapping Study of Some Fluoroquinolone Anti-Bacterial Agents. J. Mol. Modeling 1998, 4, 250–258. [Google Scholar] [CrossRef]
- Vaz, W.F.; Custodio, J.M.F.; Silveira, R.G.; Castro, A.N.; Campos, C.E.M.; Anjos, M.M.; Oliveira, G.R.; Valverde, C.; Baseia, B.; Napolitano, H.B. Synthesis, Characterization, and Third-Order Nonlinear Optical Properties of a New Neolignane Analogue. RSC Adv. 2016, 6, 79215–79227. [Google Scholar] [CrossRef]
- Custodio, J.; Faria, E.; Sallum, L.; Duarte, V.; Vaz, W.; de Aquino, G.; Carvalho Jr., P.; Napolitano, H. The Influence of Methoxy and Ethoxy Groups on Supramolecular Arrangement of Two Methoxy-Chalcones. J. Braz. Chem. Soc. 2017, 28, 2180–2191. [Google Scholar] [CrossRef]
- Michelini, L.J.; Castro, M.R.C.; Custodio, J.M.F.; Naves, L.F.N.; Vaz, W.F.; Lobón, G.S.; Martins, F.T.; Perez, C.N.; Napolitano, H.B. A Novel Potential Anticancer Chalcone: Synthesis, Crystal Structure and Cytotoxic Assay. J. Mol. Struct. 2018, 1168, 309–315. [Google Scholar] [CrossRef]
- Kalirajan, R.; Jubie, S.; Gowramma, B. Microwave Irradated Synthesis, Characterization and Evaluation for Their Antibacterial and Larvicidal Activities of Some Novel Chalcone and Isoxazole Substituted 9-Anilino Acridines. Open J. Chem. 2015, 1, 1–7. [Google Scholar] [CrossRef]
Infrared Bands (cm−1) | Theoretical Infrared Bands (cm−1) | Raman Bands (cm−1) | Assignment |
---|---|---|---|
2953 | 3051.14–3107.11 | 2993 | υ(C–H) aromatic |
2924 | 2914.51–2992.48 | – | υ(C–H) |
2853 | 3051.14 | – | υ(=C–H) |
1659 | 1662.49 | 1661 | υ(C=O) |
1599 | 1582.93 | 1599 | υ(C=C) |
1419 | 1547.44–1603.37 | 1421 | υ(C=C) aromatic ring |
1330 | 1302.72 | 1328 | δ(–C–H) |
– | – | 1299 | δ(C–H) |
1219 | 1297, 1327, 1421, 1437 | δ(C–C) | |
1185 | 1113.46–1172.86 | 1180 | δ(C–H) aromatic in plane |
1068 | 1039.37 | 1069 | υ(C–C) alicyclic, aliphatic chain vibrations |
987 | 990.73 | 989 | υ(CH=CH) |
832, 810, 773 | 816.92 | 898 | δ(C=O) in plane |
571 | – | 699 | υ(C–Br) |
- | 703, 716, 738, 776, 813, 836, 871, 898, 990 | δ(C–C) aliphatic chains |
Crystal Data | |
---|---|
Chemical formula | C19H19BrO |
Mr | 343.25 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 11.3065 (12), 8.1831 (9), 33.892 (4) |
V (Å3) | 3135.8 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.62 |
Crystal size (mm) | 0.23 × 0.20 × 0.04 |
Data Collection | |
Diffractometer | Bruker APEX-II CCD |
Absorption correction | Multi-scan SADABS2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0455 before and 0.0414 after correction. The Ratio of minimum to maximum transmission is 0.7126. The λ/2 correction factor is not present. |
Tmin, Tmax | 0.662, 0.929 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 42,969, 3878, 2966 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R [F2 > 2σ(F2)], wR(F2), S | 0.032, 0.068, 1.03 |
No. of reflections | 3878 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.39 |
LC25-48 h (mg·L−1) * | LC50-48 h (mg·L−1) * | LC75-48 h (mg·L−1) * |
---|---|---|
37.7 | 46.0 | 54.2 |
(36.6–38.9) | (45.0–46.9) | (52.9–55.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firmino, P.P.; Queiroz, J.E.; Dias, L.D.; Wenceslau, P.R.S.; de Souza, L.M.; Iermak, I.; Vaz, W.F.; Custódio, J.M.F.; Oliver, A.G.; de Aquino, G.L.B.; et al. Synthesis, Molecular Structure, Thermal and Spectroscopic Analysis of a Novel Bromochalcone Derivative with Larvicidal Activity. Crystals 2022, 12, 440. https://doi.org/10.3390/cryst12040440
Firmino PP, Queiroz JE, Dias LD, Wenceslau PRS, de Souza LM, Iermak I, Vaz WF, Custódio JMF, Oliver AG, de Aquino GLB, et al. Synthesis, Molecular Structure, Thermal and Spectroscopic Analysis of a Novel Bromochalcone Derivative with Larvicidal Activity. Crystals. 2022; 12(4):440. https://doi.org/10.3390/cryst12040440
Chicago/Turabian StyleFirmino, Pollyana P., Jaqueline E. Queiroz, Lucas D. Dias, Patricia R. S. Wenceslau, Larissa M. de Souza, Ievgeniia Iermak, Wesley F. Vaz, Jean M. F. Custódio, Allen G. Oliver, Gilberto L. B. de Aquino, and et al. 2022. "Synthesis, Molecular Structure, Thermal and Spectroscopic Analysis of a Novel Bromochalcone Derivative with Larvicidal Activity" Crystals 12, no. 4: 440. https://doi.org/10.3390/cryst12040440
APA StyleFirmino, P. P., Queiroz, J. E., Dias, L. D., Wenceslau, P. R. S., de Souza, L. M., Iermak, I., Vaz, W. F., Custódio, J. M. F., Oliver, A. G., de Aquino, G. L. B., & Napolitano, H. B. (2022). Synthesis, Molecular Structure, Thermal and Spectroscopic Analysis of a Novel Bromochalcone Derivative with Larvicidal Activity. Crystals, 12(4), 440. https://doi.org/10.3390/cryst12040440