Modeling the Effect of Magnesium Content on the Electrical Conductivity and Hardness of Technical Aluminum (1050) Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Mass Content
3.2. Hardness Test Results, Analysis, and Modeling
3.3. Electrical Conductivity Test Results, Analysis, and Modeling
3.4. Microstructure Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burger, G.B.; Gupta, A.K.; Jeffrey, P.W.; Lloyd, D.J. Microstructural control of aluminum sheet used in automotive applications. Mater. Charact. 1995, 35, 23–39. [Google Scholar] [CrossRef]
- Hirsch, J. Aluminium alloys for automotive application. Mater. Sci. Forum 1997, 242, 33–50. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.; De Smet, P.; Haszler, A.; Vieregge, A.J.M.S. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Lloyd, D.J.; Evans, D.; Pelow, C.; Nolan, P.; Jain, M. Bending in aluminium alloys AA 6111 and AA 5754 using the cantilever bend test. Mater. Sci. Technol. 2002, 18, 621–628. [Google Scholar] [CrossRef]
- Rambabu, P.P.N.K.V.; Prasad, N.E.; Kutumbarao, V.V.; Wanhill, R.J.H. Aluminium alloys for aerospace applications. In Aerospace Materials and Material Technologies; Springer: Singapore, 2017; pp. 29–52. [Google Scholar] [CrossRef]
- Caceres, C.H. Economical and environmental factors in light alloys automotive applications. Metall. Mater. Trans. A 2007, 38, 1649–1662. [Google Scholar] [CrossRef]
- Okulov, I.V.; Volegov, A.S.; Attar, H.; Bönisch, M.; Ehtemam-Haghighi, S.; Calin, M.; Eckert, J. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017, 65, 866–871. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, M.; Shen, F.; Yi, D.; Wang, B. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables. Mater. Sci. Eng. A 2018, 710, 27–37. [Google Scholar] [CrossRef]
- Jebaraj, A.V.; Aditya, K.V.V.; Kumar, T.S.; Ajaykumar, L.; Deepak, C.R. Mechanical and corrosion behaviour of aluminum alloy 5083 and its weldment for marine applications. Mater. Today Proc. 2020, 22, 1470–1478. [Google Scholar] [CrossRef]
- Periasamy, K.; Sivashankar, N.; Chandrakumar, S.; Viswanathan, R. Measurement of Friction and Wear in Aluminum Alloy Al7075/Sic & Gr Processed by Friction Stir Method. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 278–281. [Google Scholar] [CrossRef]
- Merayo Fernández, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of the Bilinear Stress-Strain Curve of Aluminum Alloys Using Artificial Intelligence and Big Data. Metals 2020, 10, 904. [Google Scholar] [CrossRef]
- Kabirian, F.; Khan, A.S.; Pandey, A. Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling. Int. J. Plast. 2014, 55, 232–246. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.X.; Pan, F.; Li, Z.; Luo, X. Effect of composition on the microstructure and mechanical properties of Mg–Zn–Al alloys. Mater. Sci. Eng. A 2007, 456, 43–51. [Google Scholar] [CrossRef]
- Cao, H.P.; Wessén, M. Effect of microstructure on mechanical properties of as-cast Mg-Al alloys. Metall. Mater. Trans. A 2004, 35, 309–319. [Google Scholar] [CrossRef]
- Qu, S.; An, X.H.; Yang, H.J.; Huang, C.X.; Yang, G.; Zang, Q.S.; Wang, Z.G.; Wu, S.D.; Zhang, Z.F. Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 2009, 57, 1586–1601. [Google Scholar] [CrossRef]
- Schurack, F.; Eckert, J.; Schultz, L. Synthesis and mechanical properties of cast quasicrystal-reinforced Al-alloys. Acta Mater. 2001, 49, 1351–1361. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Liu, Y.; Zhang, Y.; Liu, J. Analysis of the microhardness, mechanical properties and electrical conductivity of 7055 aluminum alloy. Vacuum 2020, 171, 109005. [Google Scholar] [CrossRef]
- Gokhan, O.Z.E.R.; Karaaslan, A. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process. Trans. Nonferrous Met. Soc. China 2017, 27, 2357–2362. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Murashkin, M.Y.; Sabirov, I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr. Mater. 2014, 76, 13–16. [Google Scholar] [CrossRef]
- Yuan, W.; Liang, Z. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor. Mater. Des. 2011, 32, 4195–4200. [Google Scholar] [CrossRef]
- Tzeng, Y.C.; Chen, R.Y.; Lee, S.L. Nondestructive tests on the effect of Mg content on the corrosion and mechanical properties of 5000 series aluminum alloys. Mater. Chem. Phys. 2020, 259, 124202. [Google Scholar] [CrossRef]
- Li, Z.; Yan, H.; Chen, J.; Xia, W.; Su, B.; Zhao, L.; Song, M. Effect of Mg Content on the Damping Behavior of Al–Mg Alloys. Met. Mater. Int. 2021, 27, 3155–3163. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Chen, X.; Cao, Y.; Roven, H.J.; Murashkin, M.; Valiev, R.Z.; Zhou, H. Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion. Scr. Mater. 2021, 159, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Kim, S.H.; Kim, Y.M.; You, B.S. Improving mechanical properties of extruded Mg–Al alloy with a bimodal grain structure through alloying addition. J. Alloys Compd. 2015, 646, 932–936. [Google Scholar] [CrossRef]
- Chaubey, A.K.; Scudino, S.; Prashanth, K.G.; Eckert, J. Microstructure and mechanical properties of Mg–Al-based alloy modified with cerium. Mater. Sci. Eng. A 2015, 625, 46–49. [Google Scholar] [CrossRef]
- Ying, T.; Zheng, M.Y.; Li, Z.T.; Qiao, X.G. Thermal conductivity of as-cast and as-extruded binary Mg–Al alloys. J. Alloys Compd. 2014, 608, 19–24. [Google Scholar] [CrossRef]
- Pan, H.; Pan, F.; Wang, X.; Peng, J.; Gou, J.; She, J.; Tang, A. Correlation on the electrical and thermal conductivity for binary Mg–Al and Mg–Zn alloys. Int. J. Thermophys. 2013, 34, 1336–1346. [Google Scholar] [CrossRef]
- Kim, S.H.; You, B.S.; Park, S.H. Effect of billet diameter on hot extrusion behavior of Mg–Al–Zn alloys and its influence on microstructure and mechanical properties. J. Alloys Compd. 2017, 690, 417–423. [Google Scholar] [CrossRef]
- Ren, L.; Gu, H.; Wang, W.; Wang, S.; Li, C.; Wang, Z.; Zhai, Y.; Ma, P. The microstructure and properties of an Al-Mg-0.3 Sc alloy deposited by wire arc additive manufacturing. Metals 2020, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Gu, H.; Wang, W.; Wang, S.; Li, C.; Wang, Z.; Zhai, Y.; Ma, P. Effect of Mg content on microstructure and properties of Al–Mg alloy produced by the wire arc additive manufacturing method. Materials 2019, 12, 4160. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.F.; Samuel, E.; Samuel, A.M.; Al-Ahmari, A.M.A.; Samuel, F.H. Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys. Mater. Des. 2010, 32, 2130–2142. [Google Scholar] [CrossRef]
- Cui, X.; Wu, Y.; Zhang, G.; Liu, Y.; Liu, X. Study on the improvement of electrical conductivity and mechanical properties of low alloying electrical aluminum alloys. Compos. Part B Eng. 2011, 110, 381–387. [Google Scholar] [CrossRef]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys. J. Mater. Sci. 2017, 50, 5630–5639. [Google Scholar] [CrossRef]
- Wang, B.; Yang, G.; Zhou, S.; Cui, C.; Qin, L. Effects of on-line vortex cooling on the microstructure and mechanical properties of wire arc additively manufactured Al-Mg alloy. Metals 2020, 10, 1004. [Google Scholar] [CrossRef]
- Starink, M.J.; Li, X.M. A model for the electrical conductivity of peak-aged and overaged Al-Zn-Mg-Cu alloys. Metall. Mater. Trans. A 2003, 34, 899–911. [Google Scholar] [CrossRef] [Green Version]
Mg Concentration | Al Weight (g) | Weight Ratio | Mg Weight |
---|---|---|---|
1% | 33.43 g | 0.334 g | 0.4 |
33.10 g | 0.331 g | 0.4 | |
2% | 33.32 g | 0.666 g | 0.8 |
33.38 g | 0.668 g | 0.8 | |
3% | 36.80 g | 1.10 g | 1.25 |
33.10 g | 0.992 g | 1.25 | |
4% | 33.50 g | 1.341 g | 1.6 |
32.13 g | 1.280 g | 1.3 | |
5% | 35.50 g | 1.775 g | 1.8 |
35.51 g | 1.778 g | 1.8 |
Testing Points | 1% | 2% | 3% | 4% | 5% | |||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
1 | 1.04 | 1.08 | 2.04 | 2.11 | 3.09 | 3.13 | 4.04 | 3.9 | 4.97 | 5.13 |
2 | 0.99 | 0.96 | 2.10 | 1.91 | 3.06 | 2.94 | 4.07 | 4.19 | 5.22 | 5.15 |
3 | 1.09 | 1.07 | 1.98 | 2.07 | 3.11 | 2.98 | 4.14 | 4.01 | 4.94 | 5.08 |
4 | 0.95 | 1.05 | 2.08 | 2.05 | 3.04 | 3.09 | 4.09 | 3.97 | 5.33 | 4.86 |
5 | 1.03 | 0.97 | 2.09 | 1.97 | 3.10 | 2.95 | 4.17 | 3.92 | 4.89 | 4.93 |
Average | 1.02 | 1.03 | 2.06 | 2.02 | 3.08 | 3.02 | 4.10 | 4.00 | 5.07 | 5.03 |
Error | 0.02 | 0.03 | 0.06 | 0.02 | 0.08 | 0.02 | 0.10 | 0.00 | 0.07 | 0.03 |
Mg Content Percentages | Null Hypothesis | Alternative Hypothesis | T-Value | p-Value |
---|---|---|---|---|
1% | µ = 1 | µ ≠ 1 | 1.4 | 0.194 |
2% | µ = 2 | µ ≠ 2 | 1.92 | 0.087 |
3% | µ = 3 | µ ≠ 3 | 2.24 | 0.051 |
4% | µ = 4 | µ ≠ 4 | 1.57 | 0.151 |
5% | µ = 5 | µ ≠ 5 | 1.01 | 0.337 |
Mg Concentration | Al (1050) HV | Mg 1% HV | Mg 2% HV | Mg 3% HV | Mg 4% HV | Mg 5% HV | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Num# | S | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 |
1 | 22.9 | 39.4 | 36.8 | 51.4 | 53.4 | 53.4 | 64.5 | 76.8 | 77 | 82.4 | 77.9 |
2 | 23.7 | 38.7 | 38.5 | 52.7 | 52.8 | 60.1 | 49.6 | 73.3 | 69.3 | 74.5 | 80.4 |
3 | 22.9 | 38.2 | 38.7 | 52.5 | 50.8 | 59.3 | 62.7 | 72.2 | 61.8 | 82.3 | 81.7 |
4 | 23 | 36.4 | 42.3 | 48.2 | 51.4 | 61 | 64.4 | 70.2 | 69 | 72.3 | 83 |
5 | 23.9 | 36.7 | 40.4 | 48.3 | 52.1 | 66.3 | 62.7 | 73.4 | 71.8 | 81.2 | 80.4 |
6 | 23.4 | 38.4 | 39.7 | 54.4 | 50.2 | 57.7 | 65.3 | 69.2 | 71.8 | 72.3 | 83 |
7 | 23.1 | 39.6 | 39.2 | 45 | 50.2 | 62.7 | 64.4 | 77.9 | 62.2 | 71.2 | 80.4 |
8 | 24.4 | 37.8 | 37.9 | 48.7 | 49.6 | 65.3 | 67.2 | 65.3 | 73.5 | 77.2 | 79.1 |
9 | 26.2 | 38.1 | 38.5 | 49.5 | 52.8 | 65.3 | 65.3 | 72.2 | 65.5 | 79.4 | 77.9 |
10 | 24.6 | 37.3 | 35.7 | 46.5 | 49.6 | 65.3 | 73.3 | 76.7 | 72.6 | 78.4 | 71.2 |
Average | 23.8 | 38.1 | 38.8 | 49.7 | 51.3 | 61.6 | 63.9 | 72.7 | 69.5 | 77.1 | 79.5 |
Error | −0.71 | −1.57 | −2.3 | 3.27 | −2.38 |
Mg Content Percentages | Null Hypothesis | Alternative Hypothesis | T-Value | p-Value |
---|---|---|---|---|
1% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | −1.06 | 0.307 |
2% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | −1.51 | 0.157 |
3% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | −1.01 | 0.327 |
4% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | 1.64 | 0.12 |
5% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | −1.37 | 0.189 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Mg % | 5 | 32,487 | 6497.44 | 495.09 | <0.001 |
Error | 104 | 1365 | 13.12 | ― | ― |
Total | 109 | 33,852 | ― | ― | ― |
Mg Concentration | Al (1050) (IACS) | Mg 1% (IACS) | Mg 2% (IACS) | Mg 3% (IACS) | Mg 4% (IACS) | Mg 5% (IACS) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
S | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
1 | 57.4 | 43.9 | 45 | 38.7 | 38.5 | 33.5 | 35.2 | 30.5 | 32.2 | 28.4 | 27.3 |
2 | 54.6 | 43.6 | 41.8 | 38.3 | 38.6 | 33.8 | 32.6 | 30.6 | 32.1 | 29.3 | 27.1 |
3 | 55.7 | 44.1 | 45.8 | 39.6 | 38.2 | 33.6 | 30.4 | 31.6 | 32.6 | 26.9 | 25.9 |
4 | 55.2 | 43.8 | 45.2 | 38.8 | 38.3 | 32.9 | 31.2 | 30.3 | 29.6 | 26.4 | 27.5 |
5 | 56.3 | 44.5 | 45.7 | 38.2 | 37.5 | 33.2 | 34.5 | 29.5 | 31.8 | 26.9 | 27.3 |
Average | 55.8 | 43.9 | 44.7 | 38.7 | 38.2 | 33.4 | 32.8 | 30.5 | 31.7 | 27.6 | 27 |
Error | −0.72 | 0.5 | 0.62 | −1.16 | 0.56 |
Mg Content Percentages | Null Hypothesis | Alternative Hypothesis | T-Value | p-Value |
---|---|---|---|---|
1% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | −0.95 | 0.395 |
2% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | 1.59 | 0.156 |
3% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | 0.66 | 0.544 |
4% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | −1.85 | 0.114 |
5% | µ1 − µ2 = 0 | µ1 − µ2 ≠ 0 | 0.91 | 0.399 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Mg % | 5 | 3776.27 | 755.253 | 637.6 | <0.001 |
Error | 49 | 58.04 | 1.185 | ― | ― |
Total | 54 | 3834.31 | ― | ― | ― |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani Hani, D.; Al Athamneh, R.; Albataineh, Z.; Rawashdeh, M.; Makableh, I. Modeling the Effect of Magnesium Content on the Electrical Conductivity and Hardness of Technical Aluminum (1050) Alloy. Crystals 2022, 12, 457. https://doi.org/10.3390/cryst12040457
Bani Hani D, Al Athamneh R, Albataineh Z, Rawashdeh M, Makableh I. Modeling the Effect of Magnesium Content on the Electrical Conductivity and Hardness of Technical Aluminum (1050) Alloy. Crystals. 2022; 12(4):457. https://doi.org/10.3390/cryst12040457
Chicago/Turabian StyleBani Hani, Dania, Raed Al Athamneh, Zaid Albataineh, Mustafa Rawashdeh, and Issam Makableh. 2022. "Modeling the Effect of Magnesium Content on the Electrical Conductivity and Hardness of Technical Aluminum (1050) Alloy" Crystals 12, no. 4: 457. https://doi.org/10.3390/cryst12040457
APA StyleBani Hani, D., Al Athamneh, R., Albataineh, Z., Rawashdeh, M., & Makableh, I. (2022). Modeling the Effect of Magnesium Content on the Electrical Conductivity and Hardness of Technical Aluminum (1050) Alloy. Crystals, 12(4), 457. https://doi.org/10.3390/cryst12040457