Color Genesis and Compositional Characteristics of Color-Change Sapphire from Fuping, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Conventional Gemological Characteristics
3.2. Polarizing Microscope Observation
3.3. UV-Vis Spectral Characteristics
3.4. Chemical Compositions
4. Discussion
4.1. Gemological Feature Comparisons
4.2. Color Genesis
4.3. Compositional Characteristics of Fuping Color-Change Sapphire
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adonin, S.A.; Udalova, L.I.; Abramov, P.A.; Novikov, A.S.; Yushina, I.V.; Korolkov, I.V.; Semitut, E.Y.; Derzhavskaya, T.A.; Stevenson, K.J.; Troshin, P.A.; et al. A Novel Family of Polyiodo-Bromoantimonate(III) Complexes: Cation-Driven Self-Assembly of Photoconductive Metal-Polyhalide Frameworks. Chemistry 2018, 24, 14707–14711. [Google Scholar] [CrossRef] [PubMed]
- Adonin, S.A.; Bondarenko, M.A.; Abramov, P.A.; Novikov, A.S.; Plyusnin, P.E.; Sokolov, M.N.; Fedin, V.P. Bromo- and Polybromoantimonates(V): Structural and Theoretical Studies of Hybrid Halogen-Rich Halometalate Frameworks. Chemistry 2018, 24, 10165–10170. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Lu, R. The color origin of gem diaspore: Correlation to corundum. Gems Gemol. 2018, 54, 394–403. [Google Scholar] [CrossRef]
- Sutherland, F.; Schwarz, D.; Jobbins, E.; Coenraads, R.; Webb, G. Distinctive gem corundum suites from discrete basalt fields: A comparative study of Barrington, Australia, and West Pailin, Cambodia, gemfields. J. Gemmol. 1998, 26, 65–85. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A. Geology of Corundum and Emerald Gem Deposits: A Review. Gems Gemol. 2019, 55, 55. [Google Scholar] [CrossRef] [Green Version]
- Stone-Sundberg, J.L.; Gemological Institute of America; Dubinsky, E.; Emmett, J.L. A quantitative description of the causes of color in corundum. Gems Gemol. 2021, 56, 1–27. [Google Scholar]
- Groat, L.A.; Giuliani, G.; Stone-Sundberg, J.; Sun, Z.; Renfro, N.D.; Palke, A.C. A Review of Analytical Methods Used in Geographic Origin Determination of Gemstones. Gems Gemol. 2019, 55, 55. [Google Scholar] [CrossRef] [Green Version]
- The North Mountain Plateau of the Great River. Available online: http://hebei.hebnews.cn/2019-07/18/content_7436095.html (accessed on 22 February 2022).
- Wang, L.S.; Li, Y.J.; He, M.Y. Study on corundum gem deposit in Fuping uplift area, Hebei Province. Miner. Depos. 1998, 17, 429–432. [Google Scholar]
- Song, S.; Shi, G.H. Production characteristics of mixed lithialized corundum: A case study of Fuping, Hebei province. Acta Petrol. ET Mineral. 2016, 35, 140–146. [Google Scholar]
- Song, S. Analysis on the Characteristics and Causes of Corundum Production in Fuping, Hebei Province. Master’s Thesis, University of Geosciences, Peking, China, 2015. [Google Scholar]
- Yu, X.-Y.; Long, Z.-Y.; Zhang, Y.; Qin, L.-J.; Zhang, C.; Xie, Z.-R.; Wu, Y.-R.; Yan, Y.; Wu, M.-K.; Wan, J.-X. Overview of Gemstone Resources in China. Crystals 2021, 11, 1189. [Google Scholar] [CrossRef]
- Li, L.P. Effect of Chromium and vanadium on chromatism of gemstones. Gems Gemol. 2003, 5, 18–21. [Google Scholar]
- Chen, C.Y.; Huang, W.Z.; Shao, T.; Shen, C.; Li, Z.-B.; Shen, A. The Study on UV-Vis spectrum of a special color-changed sapphire. Spectrosc. Spectr. Anal. 2019, 39, 2470–2473. [Google Scholar]
- Guo, K.P.; Zhou, Z.Y.; Zhong, Q.; Lai, M.; Wang, H.; Li, Y.B.; Qiao, X.; Nong, P.Z. Comparative study on elemental content and UV-Vis spectroscopy characteristics of Ruby from Myanmar and Mozambique. Acta Petrol. ET Mineral. 2018, 37, 1002–1010. [Google Scholar]
- Moses, T.M.; McClure, S.F. Lab Notes. Gems Gemol. 2019, 55, 91–101. [Google Scholar] [CrossRef]
- Emmett, J.L.; Scarratt, K.; McClure, S.F.; Moses, T.; Douthit, T.R.; Hughes, R.; Novak, S.; Shigley, J.E.; Wang, W.; Bordelon, O.; et al. Beryllium Diffusion of Ruby and Sapphire. Gems Gemol. 2003, 39, 84–135. [Google Scholar] [CrossRef] [Green Version]
- Bristow, J.K.; Tiana, D.; Parker, S.C.; Walsh, A. Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. J. Mater. Chem. A 2014, 2, 6198–6208. [Google Scholar] [CrossRef] [Green Version]
- Emmett, J.L.; Stone-Sundberg, J.; Guan, Y.; Sun, Z. The Role of Silicon in the Color of Gem Corundum. Gems Gemol. 2017, 53, 42–47. [Google Scholar] [CrossRef]
- Ji, J.H. Experimental study on chromatin mechanism and chromatin of Sulu sapphire. Jiangsu Geol. J. 1999, 23, 162–166. [Google Scholar]
- Smith, C.P.; Kammerling, R.C.; Keller, A.S.; Peretti, A.; Scarratt, K.V.; Khoa, N.D.; Repetto, S. Sapphires from Southern Vietnam. Gems Gemol. 1995, 31, 168–186. [Google Scholar] [CrossRef]
- Tippins, H.H. Charge-Transfer Spectra of Transition-Metal Ions in Corundum. Phys. Rev. B 1970, 1, 126–135. [Google Scholar] [CrossRef]
- Andreozzi, G.B.; D’Ippolito, V.; Skogby, H.; Hålenius, U.; Bosi, F. Color mechanisms in spinel: A multi-analytical investigation of natural crys-tals with a wide range of coloration. Phys. Chem. Miner. 2019, 46, 343–360. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Yang, L.-Y.; Li, M.; Yang, P.-T.; Shen, A.; Wang, C.-W. Spectral characteristics and color origin of unstable yellow sapphire. Spectrosc. Spectr. Anal. 2021, 41, 2611. [Google Scholar]
- Orgel, L.E. Ion Compression and the Colour of Ruby. Nature 1957, 179, 1348. [Google Scholar] [CrossRef]
- Wu, R.H.; Liu, Q.L. Study on the effect of Fe3+ in sapphire. J. Chang. Univ. 2000, 30, 39–40. [Google Scholar]
- Krebs, J.J.; Maisch, W.G. Exchange Effects in the Optical-Absorption Spectrum of, Fe3+ in Al2O3. Phys. Rev. B 1971, 4, 757–769. [Google Scholar] [CrossRef]
- Ferguson, J.; Fielding, P. The origins of the colours of natural yellow, blue, and green sapphires. Aust. J. Chem. 1972, 25, 1371–1385. [Google Scholar] [CrossRef]
- Nikolskaya, L.V.; Terekhova, V.M.; Samoilovich, M.I. On the origin of natural sapphire color. Phys. Chem. Miner. 1978, 3, 213–224. [Google Scholar] [CrossRef]
- Müller, R.; Günthard, H.H. Spectroscopic Study of the Reduction of Nickel and Cobalt Ions in Sapphire. J. Chem. Phys. 1966, 44, 365–373. [Google Scholar] [CrossRef]
- D’ippolito, V.; Andreozzi, G.B.; Hålenius, U.; Skogby, H.; Hametner, K.; Günther, D. Color mechanisms in spinel: Cobalt and iron interplay for the blue color. Phys. Chem. Miner. 2015, 42, 431–439. [Google Scholar] [CrossRef]
- Zhang, P.Q. Relationship between color and chemical composition of Sapphire in Changle, Shandong province. Shandong Geol. 2000, 16, 36–43. [Google Scholar]
- Cheng, Y.F. Influence of Magazine Elements on Color of Shandong Sapphire. Master’s Thesis, Shandong University, Shandong, China, 2006. [Google Scholar]
- Yu, X.Y. Gemstone mineralogical characteristics of sapphires from Shandong. Rock Miner. Anal. 1999, 18, 41–45. [Google Scholar]
- Gübelin, E.; Schmetzer, K. Gemstones with Alexandrite Effect. Gems Gemol. 1982, 18, 197–203. [Google Scholar] [CrossRef]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of inclusions in gemstones. Book Rev. 2008, 3, S1–S3. [Google Scholar]
- Limtrakun, P.; Zaw, K.; Ryan, C.G.; Mernagh, T.P. Formation of the Denchai gem sapphires, northern Thailand: Evidence from mineral chemistry and fluid/melt inclusion characteristics. Miner. Mag. 2001, 65, 725–735. [Google Scholar] [CrossRef]
- Saminpaya, S.; Manning, D.; Droop, G.; Henderson, C. Trace elements in Thai gem corundums. J. Gemmol. 2003, 28, 399–416. [Google Scholar] [CrossRef]
- Abduriyim, A. Determination of the origin of blue sapphire using laser ablation inductively coupled plasma mass spectrome-try (LA-ICP-MS). J. Gemmol. 2006, 30, 23–36. [Google Scholar] [CrossRef]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; Mc Clure, S.F. Geographic Origin Determination of Blue Sapphire. Gems Gemol. 2019, 55, 55. [Google Scholar] [CrossRef] [Green Version]
- Buravleva, S.Y.; Smirnov, S.Z.; Pakhomova, V.; Fedoseev, D. Sapphires from the Sutara Placer in the Russian Far East. Gems Gemol. 2016, 52, 252–264. [Google Scholar] [CrossRef]
Sample ID | Al2O3 | Mean | Fe | Mean | Ti | Mean | V | Mean | Cr | Mean | Ga | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FU-1-1 | 99.03 | 98.95 | 6193 | 6542 | 51 | 50 | 118 | 115 | 288 | 294 | 129 | 131 |
FU-1-2 | 98.87 | 6742 | 41 | 113 | 435 | 127 | ||||||
FU-1-3 | 98.94 | 6691 | 59 | 114 | 160 | 137 | ||||||
FU-2-1 | 99.05 | 98.93 | 5376 | 5709 | 34 | 47 | 85 | 100 | 439 | 533 | 142 | 140 |
FU-2-2 | 98.82 | 5595 | 55 | 108 | 600 | 132 | ||||||
FU-2-3 | 98.91 | 6157 | 51 | 108 | 560 | 147 | ||||||
FU-3-1 | 99.14 | 98.61 | 5483 | 5546 | 40 | 42 | 106 | 112 | 473 | 525 | 149 | 144 |
FU-3-2 | 98.91 | 5463 | 46 | 112 | 565 | 142 | ||||||
FU-3-3 | 97.77 | 5691 | 40 | 118 | 537 | 141 | ||||||
FU-4-1 | 99.12 | 98.95 | 5318 | 5685 | 47 | 83 | 81 | 94 | 180 | 336 | 144 | 137 |
FU-4-2 | 98.94 | 5635 | 43 | 94 | 446 | 145 | ||||||
FU-4-3 | 98.95 | 5494 | 55 | 91 | 486 | 147 | ||||||
FU-4-4 | 98.80 | 6291 | 188 | 109 | 231 | 112 | ||||||
FU-5-1 | 99.06 | 98.97 | 5162 | 5158 | 26 | 30 | 36 | 55 | 461 | 504 | 98 | 102 |
FU-5-2 | 98.93 | 5381 | 38 | 67 | 558 | 113 | ||||||
FU-5-3 | 98.96 | 5242 | 37 | 56 | 521 | 111 | ||||||
FU-5-4 | 98.93 | 4848 | 21 | 60 | 477 | 85 | ||||||
FU-6-1 | 98.79 | 98.90 | 5567 | 5245 | 52 | 53 | 141 | 137 | 1250 | 1207 | 159 | 150 |
FU-6-2 | 98.81 | 5303 | 61 | 146 | 1246 | 147 | ||||||
FU-6-3 | 99.09 | 4866 | 48 | 125 | 1126 | 144 | ||||||
MD-9-1 | 99.35 | 99.30 | 1762 | 1863 | 252 | 786 | 87 | 93 | 314 | 356 | 67 | 85 |
MD-9-2 | 99.53 | 1480 | 206 | 74 | 381 | 66 | ||||||
MD-9-3 | 99.21 | 2079 | 1355 | 108 | 317 | 104 | ||||||
MD-9-4 | 99.11 | 2132 | 1329 | 105 | 412 | 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yu, X.-Y.; Liu, F.; Alam, M.; Wu, G.-C. Color Genesis and Compositional Characteristics of Color-Change Sapphire from Fuping, China. Crystals 2022, 12, 463. https://doi.org/10.3390/cryst12040463
Wang H, Yu X-Y, Liu F, Alam M, Wu G-C. Color Genesis and Compositional Characteristics of Color-Change Sapphire from Fuping, China. Crystals. 2022; 12(4):463. https://doi.org/10.3390/cryst12040463
Chicago/Turabian StyleWang, Hui, Xiao-Yan Yu, Fei Liu, Masroor Alam, and Gai-Chao Wu. 2022. "Color Genesis and Compositional Characteristics of Color-Change Sapphire from Fuping, China" Crystals 12, no. 4: 463. https://doi.org/10.3390/cryst12040463
APA StyleWang, H., Yu, X. -Y., Liu, F., Alam, M., & Wu, G. -C. (2022). Color Genesis and Compositional Characteristics of Color-Change Sapphire from Fuping, China. Crystals, 12(4), 463. https://doi.org/10.3390/cryst12040463