The Local Exploration of Magnetic Field Effects in Semiconductors
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Time Differential Perturbed Angular Correlation (TDPAC) Method
2.2. Experiment
3. Results and Discussion
3.1. Magnetic Interaction at Room Temperature
3.2. Electric Quadrupole and Magnetic Dipole Interactions at 77 K
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Navaraj, W.T.; Lorenzelli, L.; Dahiya, R. Ultra-thin Chips for High-performance Flexible Electronics. Npj Flex. Electron. 2018, 2, 1–17. [Google Scholar] [CrossRef]
- Sigillito, A.J.; Jock, R.M.; Tyryshkin, A.M.; Beeman, J.W.; Haller, E.E.; Itoh, K.M.; Lyon, S.A. Electron Spin Coherence of Shallow Donors in Natural and Isotopically Enriched Germanium. Phys. Rev. Lett. 2015, 115, 247601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, S.J.; Ledwith, A. The Chemistry of the Semiconductor Industry, 1st ed.; Springer Science and Business Media: Dordrecht, The Netherlands, 1989; ISBN 978-0-216-92005-7. [Google Scholar]
- Vinod, K.K. Extreme-Temperature and Harsh-Environment Electronics, Chapter 3 Temperature Effects on Semiconductors; IOP Publishing Ltd.: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- Barber, H.D. Effective Mass and Intrinsic Concentration in Silicon; Solid-State Electronics, Pergamon Press: Great Britain, UK, 1967; Volume 10, pp. 1039–1051. [Google Scholar]
- Ingo, T.-S.; Manfred, R.; Matthias, S.; Ronny, S.; Thomas, F.; Thomas, O. Carrier Mobility in Semiconductors at Very Low Temperatures. Eng. Proceeding 2021, 6, 86. [Google Scholar]
- Dang, T.T.; Schell, J.; Lupascu, D.C.; Vianden, R. Dynamic Quadrupole Interactions in Semiconductors. J. Appl. Phys. 2018, 123, 165109. [Google Scholar] [CrossRef]
- Uemura, Y. Landau Levels and Electronic Properties of Semiconductor Interface. Jpn. J. Appl. Phys. 1974, 13, 17–24. [Google Scholar] [CrossRef]
- Watkins, G.D. Chapter 1–EPR and ENDOR Studies of Defects in Semiconductors. Semicond. Semimet. 1998, 51A, 1–43. [Google Scholar]
- Cordeiro, M.R.; Carbonari, A.W.; Saxena, R.N. Study of Defects in Silicon by Means of Perturbed Angular Gamma-Gamma Correlation Spectroscopy. In Proceedings of the International Nuclear Atlantic Conference–INAC 2005 Santos, Santos, Brazil, 28 August–2 September 2005; Associação Brasileira De Energia Nuclear–Aben: Rio de Janeiro, Brazil, 2005. ISBN 85-99141-01-5. [Google Scholar]
- Schatz, G.; Weidinger, A. Nuclear Condensed Matter Physics; Wiley: Chichester, UK, 1996; ISBN 0-471-95479-9. [Google Scholar]
- Abragam, A.; Pound, R.V. Influence of Electric and Magnetic Fields on Angular Correlations. Phys. Rev. 1953, 92, 943–962. [Google Scholar] [CrossRef]
- Wolf, H.; Guan, Z.; Natter, H.; Hempelmann, R.; Wichert, T. Investigation of Grain Growth and Stabilisation of Nanocrystalline Ni. J. Metastable Nanocrystalline Mater. 2001, 10, 247–252. [Google Scholar] [CrossRef]
- Rogers, J.D.; Vasquez, A. Data Reduction in Perturbed Angular Correlation Experiments. Nucl. Instrum. Methods 1975, 130, 539–541. [Google Scholar] [CrossRef]
- Schell, J.; Dang, T.T.; Zyabkin, D.V.; Mansano, R.; Gaertner, D.; Carbonari, A.W. Investigation of the Local Environment of SnO2 in an Applied Magnetic Field. Phys. B Condens. Matter 2020, 586, 412120. [Google Scholar] [CrossRef]
- Freitag, K. A Facility for Ion Implantation in Samples Colder Than 0.5 k. Radiat. Eff. 1979, 44, 185–190. [Google Scholar] [CrossRef]
- Schell, J.; Lupascu, D.C.; Carbonari, A.W.; Mansano, R.D.; Ribeiro, I.S., Jr.; Dang, T.T.; Anusca, I.; Trivedi, H.; Johnston, K.; Vianden, R. Ion Implantation in Titanium Dioxide Thin Films Studied by Perturbed Angular Correlations. J. Appl. Phys. 2017, 121, 145302. [Google Scholar] [CrossRef]
- Pasquevich, A.F.; Vianden, R. Temperature Dependence of the Hyperfine Interactions of 111Cd in Silicon. Phys. Rev. B 1987, 35, 1560–1565. [Google Scholar] [CrossRef] [PubMed]
- Pasquevich, A.F.; Vianden, R. Temperature Dependence of the Hyperfine Interactions of 111Cd in Germanium. Phys. Rev. B 1988, 37, 10858–10861. [Google Scholar] [CrossRef] [PubMed]
- Pasquevich, A.F.; Vianden, R. Time Differential Perturbed Angular Correlation Study of 111In–111Cd in III-V Compounds. Phys. Rev. B 1990, 41, 10956–10962. [Google Scholar] [CrossRef]
- Mola, G.T. Indium-Impurity Pairs in Semiconductors and the Study of the Influence of Uniaxial Stress on Defect Complexes in Silicon. Ph.D. Thesis, HISKP University of Bonn, Bonn, Germany, 6 February 2003; pp. 46–47. Available online: https://tdpac.hiskp.uni-bonn.de/doktorarbeiten/Doktorarbeit-Genene-Tessema-Mola-2003-en.pdf (accessed on 25 January 2022).
- Risse, M. Das Verhalten von Brom in InAs und GaAs, Untersucht mit den Sonden 77Br(77Se), 79Br und 82Br. Ph.D. Thesis, HISKP University of Bonn, Bonn, Germany, 21 June 2000; p. 37. Available online: https://tdpac.hiskp.uni-bonn.de/doktorarbeiten/Doktorarbeit-Monika-Risse-2000.pdf (accessed on 25 January 2022).
- Schneider, F.; Unterricker, S. Radiation Damage and its Annealing Behaviour in InP after Recoil Implantation of 118Sb and 111In Observed by TDPAC. Phys. Status Solidi A 1984, 85, 455–461. [Google Scholar] [CrossRef]
- Müller, K. Hyperfinewechselwirkungen von 100Pd in Ru, RuO2 and RuGa3. Master’s Thesis, Rheinischen Friedrich–Wilhelms–Universität Bonn, Bonn, Germany, 30 December 2009; pp. 15–16. Available online: https://tdpac.hiskp.uni-bonn.de/diplomarbeiten/Diplomarbeit-Krystyna-Mueller-2009.pdf (accessed on 25 January 2022).
- Agarwal, I. Influence of Magnetic Fields on a Defect-Complex in Group-III Nitride Semiconductors. Master’s Thesis, Bonn University, Bonn, Germany, 1 October 2012; pp. 23–24. Available online: https://tdpac.hiskp.uni-bonn.de/diplomarbeiten/Masterarbeit-Ishita-Agarwal-2012.pdf (accessed on 25 January 2022).
- Alfter, I.; Bodenstedt, E.; Hamer, B.; Knichel, W.; Meler, R.; Sajok, R.; Schaefer, T.; Schth, J.; Vianden, R. Core Vibration of 99Tc. Z. Für Phys. A Hadron. Nucl. 1993, 347, 1–14. [Google Scholar] [CrossRef]
- Hudgens, S.; Kastner, M.; Fritzsche, H. Diamagnetic Susceptibility of Tetrahedral Semiconductors. Phys. Rev. Lett. 1974, 33, 1552–1555. [Google Scholar] [CrossRef]
- Wasserrab, T. Die Temperaturabhangigkeit der elektronischen Kenngrofien des eigenleitenden Siliciums. Z. Für Nat. A 1977, 32, 746–749. [Google Scholar] [CrossRef]
- Prince, M.B. Drift Mobilities in Semiconductors. II. Silicon. Phys. Rev. 1954, 93, 1204. [Google Scholar] [CrossRef]
- Jacoboni, C.; Canali, C.; Ottaviani, G.; Alberigi Quaranta, A. A review of some charge transport properties of silicon. Solid-State Electron. 1977, 20, 77–89. [Google Scholar] [CrossRef]
- Morin, F.J.; Maita, J.P. Electrical Properties of Silicon Containing Arsenic and Boron. Phys. Rev. 1954, 94, 1525. [Google Scholar] [CrossRef]
- Prince, M.B. Drift Mobilities in Semiconductors. I. Germanium. Phys. Rev. 1953, 92, 681–687. [Google Scholar] [CrossRef]
- Busch, G.; Kern, R. Die magnetischen Eigenschaften der A-III B-V-Verbindungen. Helv. Phys. Acta 1959, 32, 29. [Google Scholar]
- Betko, J.; Merinsky, K. On the temperature dependence of the intrinsic concentration in semi-insulating InP determined from galvanomagnetic measurements. Phys. Status Solidi A 1993, 135, K67. [Google Scholar] [CrossRef]
- Zhu, L.D.; Chan, K.T.; Ballantyne, J.M. Very high mobility InP grown by low pressure metalorganic vapor phase epitaxy using solid trimethylindium source. Appl. Phys. Lett. 1985, 47, 47–48. [Google Scholar] [CrossRef]
- Weisbuch, C.; Hermann, C. Optical detection of conduction electron spin resonance in InP. Solid State Commun. 1975, 16, 659–661. [Google Scholar] [CrossRef]
- Blakemore, J.S. Intrinsic density ni (T) in GaAs: Deduced from band gap and effective mass parameters and derived independently from Cr acceptor capture and emission coefficients. J. Appl. Phys. 1982, 53, 520. [Google Scholar] [CrossRef]
- Lancefield, D. Properties of Gallium Arsenide; Brozel, M.R., Stillman, G.E., Eds.; INSPEC/IEE: London, UK, 1996; pp. 46–53. [Google Scholar]
- Wiley, J.D. Semiconductor and SemimetalsWillardson, R.K., Beer, A.C., Eds.; Chapter 2 Mobility of Holes in III-V CompoundsWillardson, R.K., Beer, A.C., Eds.; Academic Press: New York, NY, USA, 1975; Volume 10, p. 91.
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Lupascu, D.; Habenicht, S.; Lieb, K.P.; Neubauer, M.; Uhrmacher, M.; Wenzel, T. Relaxation of Electronic Defects in Pure and Doped La2O3 Observed by Perturbed Angular Correlations. Phys. Rev. B 1996, 54, 871–883. [Google Scholar] [CrossRef]
- Hermann, H.; Hans, C.W. The Physics of Atoms and Quanta: Introduction to Experiments and Theory; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Misiakos, K.; Tsamakis, D. Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K. J. Appl. Phys. 1993, 74, 3293–3297. [Google Scholar] [CrossRef]
- Canali, C.; Jacoboni, C.; Nava, F.; Ottaviani, G.; Quaranta, A.A. Electron drift velocity in silicon. Phys. Rev. B 1975, 12, 2265–2284. [Google Scholar] [CrossRef]
- Ottaviani, G.; Reggiani, L.; Canali, C.; Nava, F.; Quaranta, A.A. Hole drift velocity in silicon. Phys. Rev. B 1975, 12, 3318–3329. [Google Scholar] [CrossRef]
- Jacoboni, C.; Nava, F.; Canali, C.; Ottaviani, G. Electron drift velocity and diffusivity in germanium. Phys. Rev. B 1981, 24, 1014–1026. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, G.; Canali, C.; Nava, F.; Mayer, J.W. Hole drift velocity in high-purity Ge between 8 and 220 K. J. Appl. Phys. 1973, 44, 2917–2918. [Google Scholar] [CrossRef]
- Rode, D.L. Semiconductors and SemimetalsWillardson, R.K., Beer, A.C., Eds.; Chapter 1 Low-Field Electron TransportWillardson, R.K., Beer, A.C., Eds.; Academic Press: New York, NY, USA, 1975; Volume 10.
- Madelung, O.; Rössler, U.; Schulz, M. Gallium Arsenide (GaAs), Intrinsic Carrier Concentration, Electrical and Thermal Conductivity. Group IV Elements, IV-IV and III-V Compounds. Part b-Electronic, Transport, Optical and Other Properties. In Landolt-Börnstein-Group III Condensed Matter; Springer: Berlin/Heidelberg, 2002; Volume 41A1β, pp. 1–8. ISBN 978-3-540-42876-3. [Google Scholar] [CrossRef]
- Look, D.C. Properties of Gallium Arsenide; INSPEC/IEE: London, UK, 1990. [Google Scholar]
Implantation Energy (keV) | Incident Angle (o) | Fluence/Dose (ions/cm2) | Implantation Depth (nm) | |
---|---|---|---|---|
Si | 90 | 10 | 8.1 × 1012 | 12 |
Ge | 160 | 10 | 3.8 × 1012 | 30 |
GaAs | 160 | 10 | 6.3 × 1012 | 30 |
InP | 160 | 10 | 1.5 × 1012 | 30 |
Sample | [Marad/s] | χv(*) | ni (cm−3) | µe | µh | |
---|---|---|---|---|---|---|
0.48 T | 2.1 T | [cm2/Vs] | [cm2/Vs] | |||
Si | 6.62(2) | 33.55(2) | −0.531 × 10−6 [27] | 1.02 × 1010 [28] | 1500 [29] | 450 [30] |
Ge | 8.04(1) | 34.35(4) | −1.150 × 10−6 [27] | 2.33 × 1013 [31] | 3900 [32] | 1900 [32] |
InP | 6.63(1) | 33.48(4) | −1.504 × 10−6 [33] | 3.3 × 107 [34] | 5400 [35] | 150 [36] |
GaAs | 7.18(2) | 33.23(7) | −1.225 × 10−6 [27] | 2.1 × 106 [37] | 8865 [38] | 400 [39] |
Ge | Si | In | P | Ga | As | Cd | |
---|---|---|---|---|---|---|---|
Atomic radius [Å] | 1.25 | 1.10 | 1.55 | 1.00 | 1.30 | 1.15 | 1.55 |
Samples | T = 77 K, B = 0 | T = 77 K, B = 0.48 T | ni [cm−3] | µe [cm2/Vs] | µh [cm2/Vs] | |
---|---|---|---|---|---|---|
[Marad/s] | [Marad/s] | [Marad/s] | ||||
Si | 14.88(9) | 3.99(3) | 6.49(1) | 1.9 × 10−20 [43] | 10,000 [44] | 10,000 [45] |
Ge | 2.89(2) | 0 | 8.25(1) | - | 20,000 [46] | 400,000 [47] |
InP | 0.64(1) | 0 | 6.45(2) | - | 300,000 [48] | 14,800 [36] |
GaAs | 0.84(1) | 0 | 7.12(2) | 2.3 × 10−34 [49] | 200,000 [38] | 10,272 [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, T.T.; Schell, J.; Beck, R.; Noll, C.; Lupascu, D.C. The Local Exploration of Magnetic Field Effects in Semiconductors. Crystals 2022, 12, 560. https://doi.org/10.3390/cryst12040560
Dang TT, Schell J, Beck R, Noll C, Lupascu DC. The Local Exploration of Magnetic Field Effects in Semiconductors. Crystals. 2022; 12(4):560. https://doi.org/10.3390/cryst12040560
Chicago/Turabian StyleDang, Thien Thanh, Juliana Schell, Reinhard Beck, Cornelia Noll, and Doru C. Lupascu. 2022. "The Local Exploration of Magnetic Field Effects in Semiconductors" Crystals 12, no. 4: 560. https://doi.org/10.3390/cryst12040560
APA StyleDang, T. T., Schell, J., Beck, R., Noll, C., & Lupascu, D. C. (2022). The Local Exploration of Magnetic Field Effects in Semiconductors. Crystals, 12(4), 560. https://doi.org/10.3390/cryst12040560