Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts
Abstract
:1. Introduction
2. Engineering of Plasmon Based Ag/Au Nanostructures
2.1. Morphology and Surface Control of Ag and Au Nanosystems
2.1.1. Chemical Approaches (Sol-Gel, Hydrothermal, and Co-Precipitation Method)
2.1.2. Green Synthesis
2.2. Ag and Au Doped Metal-Oxides Nanostructures
2.3. Enhancement in Plasmon of Au and Au for Biomedical Aspects
3. Fundamental Characteristics towards Biomedical Applications
3.1. Bandgap Engineering and Optical Responses for Improved Catalytic Action
3.2. Role of Chemical Compositions, Surface, and Defects to Improve the Catalytic Functions
4. Antibacterial Influences of Ag and Au Based Nano-Catalysts
4.1. Schematic Antimicrobial Activities: Improved Performance
4.2. Tunable Ag and Au Nanostructures and Their Biomedical Applications
4.3. Biomedical Applications of Ag and Au Nanostructures
5. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, V.; Choudhary, N.; Khan, S.H.; Malik, P.; Inwati, G.; Suriyaprabha, R.; Ravi, R. Synthesis and Characterisation of Nano-Biosorbents and Their Applications for Waste Water Treatment. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; IGI Global: Hershey, PA, USA, 2020; Volume 16, pp. 252–290. [Google Scholar] [CrossRef]
- Malik, P.; Katyal, V.; Malik, V.; Asatkar, A.; Inwati, G.; Mukherjee, T.K. Nanobiosensors: Concepts and Variations. ISRN Nanomater. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Inwati, G.; Rao, Y.; Singh, M. Thermodynamically induced in Situ and Tunable Cu Plasmonic Behaviour. Sci. Rep. 2018, 8, 3006. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, N.; Inwati, G.; Singh, M. Biomaterial Co-Cr-Mo Alloys Nano Coating Calcium Phosphate Orthopedic Treatment. In Proceedings of the 2nd International Conference on Structural Nano Composites (NANOSTRUC 2014), Madrid, Spain, 22 August 2014; Volume 64. [Google Scholar] [CrossRef] [Green Version]
- Malik, P.; Mukherjee, T.K. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int. J. Pharm. 2018, 553, 483–509. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Inwati, G.K.; Mukherjee, T.K.; Singh, S.; Singh, M. Green silver nanoparticle and Tween-20 modulated pro-oxidant to antioxidant curcumin transformation in aqueous CTAB stabilized peanut oil emulsions. J. Mol. Liq. 2019, 291, 111252. [Google Scholar] [CrossRef]
- Kumar, P.; Inwati, G.; Mathpal, M.; Ghosh, S.; Roos, W.; Swart, S. Defects induced Enhancement of Antifungal activities of Zn doped CuO nanostructures. Appl. Surface Sci. 2021, 560, 150026. [Google Scholar] [CrossRef]
- Conroy, C.V.; Jiang, J.; Zhang, C.; Ahuja, T.; Tang, Z.; Prickett, C.A.; Yang, J.J.; Wang, G. Enhancing near IR luminescence of thiolate Au nanoclusters by thermo treatments and heterogeneous subcellular distributions. Nanoscale 2014, 6, 7416–7423. [Google Scholar] [CrossRef]
- Modi, S.; Prajapati, R.; Inwati, G.K.; Deepa, N.; Tirth, V.; Yadav, V.K.; Yadav, K.K.; Islam, S.; Gupta, P.; Kim, D.-H.; et al. Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals 2022, 12, 39. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Conroy, C.V.; Tang, Z.; Li, G.; Zhao, R.Y.; Wang, G. Fluorescence Intensity and Lifetime Cell Imaging with Luminescent Gold Nanoclusters. J. Phys. Chem. C 2012, 116, 26561–26569. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, S.; Wang, Z.; Yao, Q.; Fang, S.; Zhou, X.; Yuan, X.; Xie, J. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. J. Mater. Chem. B 2020, 8, 4846–4850. [Google Scholar] [CrossRef]
- Yuan, X.; Setyawati, M.I.; Tan, A.S.; Ong, C.N.; Leong, D.; Xie, J. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013, 5, e39. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Y.; Zhou, X.; Li, Z.; Zhu, H.; Du, F.; Yuan, X.; Yao, Q.; Xie, J. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020, 13, 203–208. [Google Scholar] [CrossRef]
- Inwati, G.K.; Kumar, P.; Singh, M.; Yadav, V.K.; Kumar, A.; Soma, V.R.; Swart, H.C. Study of photoluminescence and nonlinear optical behaviour of AgCu nanoparticles for nanophotonics. Nano-Struct. Nano-Objects 2021, 28, 100807. [Google Scholar] [CrossRef]
- Inwati, G.; Rao, Y.; Singh, M. In Situ Growth of Low-Dimensional Silver Nanoclusters with Their Tunable Plasmonic and Thermodynamic Behavior Article. ACS Omega 2017, 2, 5748–5758. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Shi, H.; Ma, G.; Luo, L.; Tang, Z. Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Front. Bioeng. Biotechnol. 2020, 8, 1019. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Mani, A. Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J. Saudi Chem. Soc. 2020, 24, 1010–1024. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Tan, S.; Gao, J.; Fu, Y.; Liu, Z. Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg. Chem. Commun. 2019, 100, 44–50. [Google Scholar] [CrossRef]
- Eskandari-Nojedehi, M.; Jafarizadeh-Malmiri, H.; Rahbar-Shahrouzi, J. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: Physico-chemical characteristics and antifungal activity studies. Green Process. Synth. 2018, 7, 38–47. [Google Scholar] [CrossRef]
- Su, C.; Huang, K.; Li, H.-H.; Lu, Y.-G.; Zheng, D.-L. Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology. J. Nanomater. 2020, 2020, 5616379. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Inwati, G.; Kumar, P.; Roos, W.; Swart, H.; Singh, M. UV-irradiation effects on tuning LSPR of Cu/Ag nanoclusters in ion exchanged glass matrix and its thermodynamic behaviour. J. Alloy. Compd. 2020, 823, 153820. [Google Scholar] [CrossRef]
- Nguyen, N.H.A.; Padil, V.V.T.; Slaveykova, V.I.; Černík, M.; Ševců, A. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii. Nanoscale Res. Lett. 2018, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ma, H.; Padelford, J.W.; Qinchen, W.; Yu, W.; Wang, S.; Zhu, M.; Wang, G. Near Infrared Electrochemiluminescence of Rod-Shape 25-Atom AuAg Nanoclusters That Is Hundreds-Fold Stronger Than That of Ru(bpy)3 Standard. J. Am. Chem. Soc. 2019, 141, 9603–9609. [Google Scholar] [CrossRef] [PubMed]
- Vasil’Kov, A.Y.; Dovnar, R.I.; Smotryn, S.M.; Iaskevich, N.N.; Naumkin, A.V. Plasmon Resonance of Silver Nanoparticles as a Method of Increasing Their Antibacterial Action. Antibiotics 2018, 7, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.; Wang, R.; Hargis, B.; Lu, H.; Li, Y. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1. Sensors 2012, 12, 12506–12518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, B.; Kumar, D.; Sharma, N.; Mohapatra, S. Morphological, plasmonic and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract. J. Phys. Chem. Solids 2019, 126, 257–266. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Nie, R.; Zhang, Y. Ag–Au bimetallic nanocomposites stabilized with organic–inorganic hybrid microgels: Synthesis and their regulated optical and catalytic properties. RSC Adv. 2018, 8, 12428–12438. [Google Scholar] [CrossRef] [Green Version]
- Inwati, G.K.; Kumar, P.; Roos, W.; Swart, H. Thermally induced structural metamorphosis of ZnO:Rb nanostructures for antibacterial impacts. Colloids Surf. B Biointerfaces 2020, 188, 110821. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, L.; Luo, X. ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity. RSC Adv. 2018, 8, 4890–4894. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mathpal, M.C.; Inwati, G.; Ghosh, S.; Kumar, V.; Roos, W.; Swart, H. Optical and surface properties of Zn doped CdO nanorods and antimicrobial applications. Colloids Surf. A Physicochem. Eng. Asp. 2020, 605, 125369. [Google Scholar] [CrossRef]
- Alagarasan, D.; Harikrishnan, A.; Surendiran, M.; Indira, K.; Khalifa, A.S.; Elesawy, B.H. Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Appl. Nanosci. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Vu, V.T.; Nguyen, T.H.; Nguyen, T.A.; Tran, V.K.; Nguyen-Tri, P. Antibacterial Activity of TiO2- and ZnO-Decorated with Silver Nanoparticles. J. Compos. Sci. 2019, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Nene, A.G.; Punia, S.; Kumar, M.; Abbas, Z.; Thakral, F.; Tuli, H.S. Synthesis, Characterization and Antibacterial Activity of Cuo Nanoparticles. Int. J. Appl. Pharm. 2020, 12, 17–20. [Google Scholar] [CrossRef]
- Zarrini, G.; Barjasteh, E.M. Design of Zn1−xCuxO Nanocomposite Ag-doped As an Efficient Antibacterial Agent. J. Inorg. Organomet. Polym. Mater. 2022, 32, 781–790. [Google Scholar]
- Kumar, P.; Kumar, A.; Rizvi, M.A.; Moosvi, S.K.; Krishnan, V.; Duvenhage, M.; Roos, W.; Swart, H. Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 2020, 514, 145930. [Google Scholar] [CrossRef]
- Kumar, K.K.P.; Dinesh, N.D.; Murari, S.K. Synthesis of CuO and Ag doped CuO nanoparticles from Muntingia calabura leaf extract and evaluation of their antimicrobial potential. Int. J. Nano Biomater. 2019, 8, 228–252. [Google Scholar] [CrossRef]
- Kumar, A.; Boruah, B.; Liang, X.-J. Gold Nanoparticles: Promising Nanomaterials for the Diagnosis of Cancer and HIV/AIDS. J. Nanomater. 2011, 2011, 202187. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. [Google Scholar] [CrossRef]
- Gao, C.; Hu, Y.; Wang, M.; Chi, M.; Yin, Y. Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479. [Google Scholar] [CrossRef]
- Tyagi, N.; Kumar, A. Understanding effect of interaction of nanoparticles and antibiotics on bacteria survival under aquatic conditions: Knowns and unknowns. Environ. Res. 2020, 181, 108945. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, I.; Ahmed, E.; Akhtar, M.S.; Khalid, N. Facile and inexpensive synthesis of Ag doped ZnO/CNTs composite: Study on the efficient photocatalytic activity and photocatalytic mechanism. J. Mol. Liq. 2020, 311, 113326. [Google Scholar] [CrossRef]
- Hashim, F.S.; Alkaim, A.F.; Salim, S.J.; Alkhayatt, A.H.O. Effect of (Ag, Pd) doping on structural, and optical properties of ZnO nanoparticales: As a model of photocatalytic activity for water pollution treatment. Chem. Phys. Lett. 2019, 737, 136828. [Google Scholar] [CrossRef]
- Jo, Y.-K.; Kim, B.H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009, 93, 1037–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mie, R.; Samsudin, M.W.; Din, L.B.; Ahmad, A.; Ibrahim, N.; Adnan, S.N.A. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int. J. Nanomed. 2013, 9, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Fan, X.; Xu, W.; Zhang, R.; Wu, G. Biosynthesis of Bimetallic Au–Ag Nanoparticles Using Escherichia coli and its Biomedical Applications. ACS Biomater. Sci. Eng. 2020, 6, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.A.M.; Baños, F.G.D.; Grinholc, M.; Dena, A.S.A.; El-Sherbiny, I.M.; Megahed, M. Exploring the physicochemical and antimicrobial properties of gold-chitosan hybrid nanoparticles composed of varying chitosan amounts. Int. J. Biol. Macromol. 2020, 162, 1760–1769. [Google Scholar] [CrossRef]
- Zhang, Y.; Dasari, T.P.S.; Deng, H.; Yu, H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Heath Part C Environ. Carcinog. Ecotoxicol. Rev. 2015, 33, 286–327. [Google Scholar] [CrossRef]
- Rajendran, S.; Inwati, G.K.; Yadav, V.K.; Choudhary, N.; Solanki, M.B.; Abdellattif, M.H.; Yadav, K.K.; Gupta, N.; Islam, S.; Jeon, B.-H. Enriched Catalytic Activity of TiO2 Nanoparticles Supported by Activated Carbon for Noxious Pollutant Elimination. Nanomaterials 2021, 11, 2808. [Google Scholar] [CrossRef]
- Rao, Y.; Inwati, G.; Kumar, A.; Meena, J.; Singh, M. Metal Oxide based Nanoparticles use for Pressure Sensor. Int. J. Curr. Eng. Technol. 2014, 4, 2492–2498. [Google Scholar]
- Yadav, V.K.; Suriyaprabha, R.; Inwati, G.K.; Gupta, N.; Singh, B.; Lal, C.; Kumar, P.; Godha, M.; Kalasariya, H. A Noble and Economical Method for the Synthesis of Low Cost Zeolites from Coal Fly Ash Waste. Adv. Mater. Process. Technol. 2021, 1–19. [Google Scholar] [CrossRef]
- Cavalu, S.; Banica, F.; Simon, V.; Akin, I.; Goller, G. Surface Modification of Alumina/Zirconia Ceramics Upon Different Fluoride-Based Treatments. Int. J. Appl. Ceram. Technol. 2014, 11, 402–411. [Google Scholar] [CrossRef]
- Cavalu, S.; Ratiu, C.; Ponta, O.; Simon, V.; Rugina, D.; Miclaus, V.; Akin, I.; Goller, G. Improving osseointegration of alumina/zirconia ceramic implants by fluoride surface treatment. Dig. J. Nanomater. Biostruct. 2014, 9, 797–808. [Google Scholar]
Metallic Nanoparticles | Particle Size (nm) | Targeted | Cancer Cells | Methods | Method Performance |
---|---|---|---|---|---|
Au NPs | 15 | pAb and mAb anti-CEA antibodies | MCF7 cells | SERS immunoassay | Different immunoassay method |
Au NPs | 35 | anti-EGFR | Oral epithelial living Cancerous cell | SPR | Valuable molecular sensors |
Au NPs | 20 | Heparin | Epithelial | Bioimaging | therapeutics and Imaging |
Au NPs | 15 | Functionalized shiny carbon electrodes | Lung and liver cancer | Electrochemical and contact-based angle measurements | Rapid actions and very sensitive exposure for cancerous cell |
Au NPs | 30 | ENO1 antibodies | Lung cancer | Electrochemical immune device | Measurable tests protein and cancerous biomarkers |
Au NPs | 100 | Anticarcinogen-embryonic antibodies | Cancer | ELISA | Premature diagnosis of cancer |
Au NPs | 90 | EGF-ligand and tag Raman receptors | Flow tumours | SERS | Unique clinical tool for managing of patients |
Au NPs | 20 | Aptamer | Leukaemia and lymphoma | Spectroscopic technique | Primary and precise exposure of cancer |
Nanoparticles | Nature of Infection | Therapeutic Conclusion |
---|---|---|
Ag NPs | Malaria Leishmaniasis Helminth infections Herpes Influenza Influenza | Prevention of growth of P. falciparum Restriction of proliferation and metabolic actions of promastigotes. Better anthelmintic actions in contradiction to worm Virus duplication was reserved Active against influenza viruses Dynamic against influenza A virus |
Ag NPs manufacture using biological methods | Bacterial infection | Outstanding antibacterial activities |
Nanowires of Ag NP | Bacterial infection | Nanocube Ag NPs indicated the maximum antibacterial activities. |
Hexagonal and nanoplates Ag NP | Bacterial infection | Hexagonal-shaped Ag NPs against S. aureus and E. coli |
Rod-shaped Ag NPs | Bacterial infection | The triangular shaped revealed high antibacterial activities against E. coli |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inwati, G.K.; Yadav, V.K.; Ali, I.H.; Kakodiya, S.D.; Choudhary, N.; Makwana, B.A.; Lal, C.; Yadav, K.K.; Singh, B.; Islam, S.; et al. Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts. Crystals 2022, 12, 589. https://doi.org/10.3390/cryst12050589
Inwati GK, Yadav VK, Ali IH, Kakodiya SD, Choudhary N, Makwana BA, Lal C, Yadav KK, Singh B, Islam S, et al. Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts. Crystals. 2022; 12(5):589. https://doi.org/10.3390/cryst12050589
Chicago/Turabian StyleInwati, Gajendra Kumar, Virendra Kumar Yadav, Ismat Hassan Ali, Shakti Devi Kakodiya, Nisha Choudhary, Bharat A. Makwana, Chhagan Lal, Krishna Kumar Yadav, Bijendra Singh, Saiful Islam, and et al. 2022. "Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts" Crystals 12, no. 5: 589. https://doi.org/10.3390/cryst12050589
APA StyleInwati, G. K., Yadav, V. K., Ali, I. H., Kakodiya, S. D., Choudhary, N., Makwana, B. A., Lal, C., Yadav, K. K., Singh, B., Islam, S., & Cavalu, S. (2022). Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts. Crystals, 12(5), 589. https://doi.org/10.3390/cryst12050589