A Comparative Study of the Gemological Characteristics and Inclusions in Spinels from Myanmar and Tajikistan
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Conventional Gemological Properties
4.2. Inclusions under the Gem Microscope
4.2.1. Myanmarese Spinel Inclusions
4.2.2. Tajikistani Spinel Inclusions
4.3. Raman Spectra Characteristics
4.3.1. Comparison of the Raman Spectra of the Myanmarese and Tajikistani Spinels
4.3.2. Raman Spectra Comparison of Common Inclusions in the Myanmarese and Tajikistani Spinels
4.3.3. Comparison of the Raman Spectra of the Different Inclusions in the Myanmarese and Tajikistani Spinels
5. Discussion
5.1. Gemological Characteristics
5.2. Comparison of the Characteristics of Inclusions in Spinels from Myanmar and Tajikistan and Their Raman Spectra
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiao, L. Gemmological characteristics and commercial evaluation of Burmese spinels. Jewellery 1992, 1, 43–46. (In Chinese) [Google Scholar]
- Yu, X.Y.; Long, Z.Y.; Zhang, Y.; Qin, L.J.; Zhang, C.; Xie, Z.R.; Wu, Y.R.; Yan, Y.; Wu, M.K.; Wan, J.X. Overview of gemstone resources in China. Crystals 2021, 11, 1189. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Boyce, A.J.; Pardieu, V.; Pham, V.L. Pink and red spinels in Marble: Trace elements, oxygen isotopes, and sources. Can. Mineral. 2017, 55, 743–761. [Google Scholar] [CrossRef]
- Pardieu, V. Hunting for “Jedi” spinels in Mogok. Gems Gemol. 2014, 50, 46–57. [Google Scholar] [CrossRef]
- Zhang, B.L.; Schwarz, D.; Lu, T.J.B. Geographic Origin Determination of Colored Gemstones, 1st ed.; Geology Press: Beijing, China, 2012; pp. 305–328. [Google Scholar]
- Malsy, A.; Klemm, L. Distinction of gem spinels from the Himalayan Mountain Belt. Chima 2010, 64, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y. Synthesis of spinel by flux growth and its gemmological characteristics. China Lapid. 1994, 6, 39–41. (In Chinese) [Google Scholar]
- Zhang, L. Study on gemmological characters of Flux-Grown synthetic spinel. J. Gems Gemmol. 2004, 6, 18–23, (In Chinese with English Abstract). [Google Scholar]
- Ren, Q.Q. High Temperature Heat Treatment of Spinel from Burma. Master’s Thesis, China University of Geosciences, Wuhan, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Sun, W.J. The Study on Gemological Characteristics and Inclusion Origin of Spinels in Myanmar. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Wang, C.S. Raman Spectra Study of Heating Treatment and Order-Disorder Transition of Cr3+-Doped MgAl2O4 spinel. Spectrosc Spect Anal. 2019, 39, 109–113, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.S.; Shen, X.T.; Ren, Q.Q.; Luo, Y. Composition and formation of octahedral inclusion in spinel. J. Gems Gemmol. 2016, 18, 40–46, (In Chinese with English Abstract). [Google Scholar]
- Phyo, M.M.; Bieler, E.; Franz, L.; Balmer, W.; Krzemnicki, M.S. Spinel from Mogok, Myanmar-a detailed inclusion study by Raman microspectroscopy and scanning Electron Microscopy. J. Gemol. 2019, 36, 418–435. [Google Scholar] [CrossRef]
- Phyo, M.M. Mineralogical, Gemmological and Petrological Study of the Mogok Stone Tract in Myanmar with a Special Focus on Gem-Quality Ruby and Spinel. Ph.D. Thesis, University of Basel, Basel, Switzerland, 2019. [Google Scholar]
- Zhai, S.H.; Pei, J.C.; Huang, W.Z. Orange-yellow inclusion in spinel from Man Sin, Myanmar. J. Gems Gemmol. 2019, 21, 24–30, (In Chinese with English Abstract). [Google Scholar]
- Ananyev, S.A.; Konovalenko, S.L. Morphological and gemological features of gem-quality spinel from the Goron deposit, southwestern Pamirs, Tajikistan. J. Gemmol. 2012, 33, 15–18. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Vinh, H.Q.; Lhomme, T.; Maluski, H.; Pecher, A. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can. J. Earth Sci. 2006, 34, 169–191. [Google Scholar] [CrossRef]
- Grew, E.S.; Pertsev, N.N.; Yates, M.G.; Christy, A.G.; Marquez, N.; Chernosky, J.V. Sapphirine+forsterite and sapphirine+ humite-group minerals in an ultra-magnesian lens from Kuhi-lal, SW Pamirs, Tajikistan: Are these assemblages forbidden? J. Petrol. 1994, 35, 1275–1293. [Google Scholar] [CrossRef]
- Robert, E.K.; Robert, C.K. Status of ruby and sapphire mining in the Mogok Stone Tract. Gems Gemol. 1992, 28, 152–174. [Google Scholar]
- Zaw, K. Overview of mineralization styles and tectonic-metallogenic setting in Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 531–556. [Google Scholar] [CrossRef]
- D’Ippolito, V.; Andreozzi, G.B.; Bersani, D.; Lottici, P.P. Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 2015, 46, 1255–1264. [Google Scholar] [CrossRef]
- Khan, T.M. Into the nature of Pd-dopant induced local phonon modes and associated disorders in ZnO; based on spatial correlation model. Mater. Chem. Phys. 2015, 153, 248–255. [Google Scholar] [CrossRef]
- Khan, T.M.; Lunney, J.G.; O’Rourke, D.; Meyer, M.C.; Creel, J.R.; Siewierska, K.E. Various pulsed laser deposition methods for preparation of silver-sensitised glass and paper substrates for surface-enhanced Raman spectroscopy. Appl. Phys. A Mater. Sci. Process. 2019, 125, 659. [Google Scholar] [CrossRef]
- Yu, X.Y. Colored Gemmology, 2nd ed.; Geology Press: Beijing, China, 2016; pp. 15–26. [Google Scholar]
- Gübelin, E.J.; Koivula, J.I. Gemstone Inclusions, 1st ed.; Dazhi Press: Taiwan, China, 1995; pp. 372–383. [Google Scholar]
- Chatzipanagis, K.; Baumann, C.G.; Sandri, M.; Sprio, S.; Tampieri, A.; Kroger, R. In situ mechanical and molecular investigations of collagen/ apatite biomimetic composites combining Raman spectroscopy and stress-strain analysis. Acta Biomater. 2016, 46, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q. Study on Apatite Zoning Structure with the Method of Laser Raman Spectroscopy. Master’s Thesis, China University of Petroleum (EastChina), Shandong, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Liu, J.Y.; Bai, F.; Luo, S.Q.; Yu, S.L.; Wu, Z.Y. Study on Gemmological Characteristics and Chemical Comosition of Zircon from Changle, Shandong Province. J. Gems Gemmol. 2012, 14, 32–37, (In Chinese with English Abstract). [Google Scholar]
- Themelis, T. Gems and Mines of Mogok; A&T Publishers: Los Angeles, CA, USA, 2008. [Google Scholar]
- Tang, Z.; Chen, J.L.; Zhang, Y.; Li, X.B.; Sun, X.P. LA-ICP-MS chronological and zircon Raman spectral study of granulite in the Mengku iron deposit, Altay Mountains, Xinjiang. Geol. Bull. China 2012, 31, 2063–2069, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zheng, H.F. Experimental Study of Raman Spectra of Magnesite at 297 K and at the Pressure of 0.13–1 GPa. Spectrosc. Spect. Anal. 2005, 25, 1426–1428, (In Chinese with English abstract). [Google Scholar]
- Zhao, J.Z.; Lv, X.B. Study on In-situ Raman Spectra of Dolomite under High Pressure. J. Rock Miner. Anal. 2008, 27, 337–340, (In Chinese with English Abstract). [Google Scholar]
- Tao, Y.C.; Hao, Z.Y.; Jia, P.; Lu, C.H. Raman Spectrum Analysis of Pyrophillite and Dolomite Treated by HPHT. Diam. Abras. Eng. 2003, 138, 61–64, (In Chinese with English Abstract). [Google Scholar]
- Du, G.P.; Fan, J.L. Characteristics of Raman Spectral of Calcite Group Minerals. J. Mineral Petrol. 2010, 30, 32–35, (In Chinese with English Abstract). [Google Scholar]
- Zhao, J.; Zheng, H.F. Research on Raman Spectra of Calcite at Pressure of 0.1–800 MPa. Chin. J. High Press. Phys. 2003, 17, 226–229, (In Chinese with English Abstract). [Google Scholar]
- Wang, S.X.; Zheng, H.F. Research on Raman Spectra of Calcite Phase Transition at High Pressure. Spectrosc. Spect. Anal. 2011, 31, 2117–2119, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.J.; Zheng, H.F. In Situ Experimental Study of Phase Transition of Calcite by Raman Spectroscopy at High Temperature and High Pressure. Spectrosc. Spect. Anal. 2012, 32, 378–382, (In Chinese with English Abstract). [Google Scholar]
- Fu, P.G.; Zheng, H.F. Raman Spectra of Aragonite and Calcite at High Temperature and High Pressure. Spectrosc. Spect. Anal. 2013, 33, 1557–1561, (In Chinese with English Abstract). [Google Scholar]
- An, Y.F.; Zheng, L.G.; Sun, Q.W.; Jiang, Y.L.; Wang, C.J.; Wang, R.R.; Niu, S. Micro-Raman Spectral Characteristics and Implication of FeS2 from Metamorphic Belt between Coal and Intrusion in Wolonghu Coal Mine of Anhui Province, China. Spectrosc. Spect. Anal. 2016, 36, 986–990, (In Chinese with English Abstract). [Google Scholar]
- Long, Z.Y.; Yu, X.Y.; Zheng, Y.Y. Ore formation of the Dayakou emerald deposit (Southwest China) constrained by chemical and boron isotopic composition of tourmaline. Ore Geol. Rev. 2021, 135, 104208. [Google Scholar] [CrossRef]
- Long, Z.Y.; Yu, X.Y.; Jiang, X.; Guo, B.J.; Ma, C.Y.; You, Y.; Zheng, Y.Y. Fluid boiling and fluid-rock interaction as primary triggers for emerald deposition: Insights from the Dayakou emerald deposit (China). Ore Geol. Rev. 2021, 139, 104454. [Google Scholar] [CrossRef]
- Zhang, B.L. Systematic Gemmology, 2nd ed.; Geology Press: Beijing, China, 2006; pp. 281–286. [Google Scholar]
- Li, Q. Mineralogical Characterisation of the Monso Ruby Deposit. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Zhu, J.R.; Yu, X.Y. Inclusions of Spinel from Burma. J. Gems Gemmol. 2018, 20, 18–23, (In Chinese with English Abstract). [Google Scholar]
- Phyo, M.M.; Wang, H.; Guillong, M.; Berger, A.; Franz, L.; Balmer, W.A.; Krzemnicki, M.S. U-Pb Dating of Zircon and Zirconolite Inclusions in Marble-Hosted Gem-Quality Ruby and Spinel from Mogok, Myanmar. Minerals 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
Sample Number | Origin | T2g(1) | (Eg) | T2g(2) | A1g | Date Source |
---|---|---|---|---|---|---|
A Jump of Mg in the Tetrahedral Position | Mg Symmetric Bending Vibrations within the Tetrahedron | — | Mg-O Symmetric Stretching Vibrations within the Tetrahedron | |||
M-6 | Myanmar | 309 | 405 | 663 | 764 | this paper |
M-9 | Myanmar | 311 | 407 | 665 | 766 | this paper |
T-9 | Tajikistan | 312 | 405 | 665 | 766 | this paper |
T-10 | Tajikistan | 312 | 405 | 663 | 766 | this paper |
MgAl2O4 | — | 311 | 407.8 | 671 | 772 | [9] |
Mineral Names | Myanmar | Tajikistan |
---|---|---|
Apatite | Common | Common |
Calcite | Common | None |
Dolomite | Common | None |
Graphite | Sometimes | Sometimes |
Magnesite | Common | Common |
Phlogopite | Sometimes | None |
Pyrite | Rare | None |
Rutile | None | Sometimes |
Zircon | Rare | Common |
Talc | None | Rare |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, J.-R.; Yu, X.-Y. A Comparative Study of the Gemological Characteristics and Inclusions in Spinels from Myanmar and Tajikistan. Crystals 2022, 12, 617. https://doi.org/10.3390/cryst12050617
Zhang Y, Zhu J-R, Yu X-Y. A Comparative Study of the Gemological Characteristics and Inclusions in Spinels from Myanmar and Tajikistan. Crystals. 2022; 12(5):617. https://doi.org/10.3390/cryst12050617
Chicago/Turabian StyleZhang, Yi, Jing-Ran Zhu, and Xiao-Yan Yu. 2022. "A Comparative Study of the Gemological Characteristics and Inclusions in Spinels from Myanmar and Tajikistan" Crystals 12, no. 5: 617. https://doi.org/10.3390/cryst12050617
APA StyleZhang, Y., Zhu, J. -R., & Yu, X. -Y. (2022). A Comparative Study of the Gemological Characteristics and Inclusions in Spinels from Myanmar and Tajikistan. Crystals, 12(5), 617. https://doi.org/10.3390/cryst12050617