Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Thermal Shearing Test
3. Results
3.1. Macroscopic Analysis
3.1.1. Effect of Shearing Temperature
3.1.2. Effect of Shear Edge Clearance
3.2. Experimental Analysis of Super Depth of Field
3.3. Orthogonal Test Analysis
3.3.1. Simulation Condition
3.3.2. Material Model and Fracture Criterion Model
3.3.3. Results Analysis
4. Conclusions
- 1.
- In the experiment of warm shear of a rolled AZ31B magnesium plate, the shear edge gap remains unchanged, the height and area of burnish band increases first and then decreases with the rise of shear temperature, and the section quality gradually decreases when the temperature rises to 150 °C. Shear temperature remains unchanged, the height and area of the burnish band increases with the growth of the shear edge gap and then decreases, and the section quality gradually decreases after the shear edge gap reaches 10%. The analysis of the experimental results shows that the best fracture quality is obtained at 150 °C shear temperature with 12% shear gap; the better fracture quality is obtained at the remaining shear temperature with 10% shear gap;
- 2.
- Using DEFORM-3D finite element software to simulate the shearing process of magnesium alloy plate and using an orthogonal test method to analyze the results, the study obtained that the influence of the shearing temperature on the height of the burnish band is significantly greater than the shearing edge gap when the rolled AZ31B magnesium plate is sheared in temperature;
- 3.
- In this study, the shearing process of a rolled AZ31B magnesium alloy plate gives priority to the selection of shearing temperature, so the shearing temperature of 150 °C and the shear edge clearance of 12% are selected as the best shearing processing window.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kahn, R.W.; Shi, C.S.; Ke, J. Materials Science and Technology Series; Science Press: Beijing, China, 1999; Volume 8. [Google Scholar]
- Ramalingam, V.V.; Ramasamy, P.; Kovukkal, M.D.; Myilsamy, G. Research and development in magnesium alloys for industrial and biomedical applications: A review. Met. Mater. Int. 2020, 26, 409–430. [Google Scholar] [CrossRef]
- Hao, B.H.; Xia, X.H. Principle of blank shearing and method for improving precision of blank. Forg. Stamp. Technol. 2000, 25, 3. [Google Scholar]
- Rakshith, M.; Seenuvasaperumal, P. Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy. J. Magnes. Alloy. 2021, 9, 1692–1714. [Google Scholar]
- Zhong, Y.B. Stamping Process and Die Design; Machinery Industry Press: Beijing, China, 2000. [Google Scholar]
- Sagapuram, D.; Efe, M.; Moscoso, W.; Chandrasekar, S.; Trumble, K.P. Controlling texture in magnesium alloy sheet by shear-based deformation processing. Acta Mater. 2013, 61, 6843–6856. [Google Scholar] [CrossRef]
- Han, T.; Zou, J.; Huang, G.; Ma, L.; Che, C.; Jia, W.; Wang, L.; Pan, F. Improved strength and ductility of AZ31B Mg alloy sheets processed by accumulated extrusion bonding with artificial cooling. J. Magnes. Alloy. 2021, 9, 1715–1724. [Google Scholar] [CrossRef]
- Fatemi-Varzaneh, S.M.; Zarei-Hanzaki, A.; Beladi, H. Dynamic recrystallization in AZ31 magnesium alloy. Mater. Sci. Eng. A 2007, 456, 52–57. [Google Scholar] [CrossRef]
- Jang, H.S.; Lee, J.K.; Tapia AJ, S.F.; Kim, N.J.; Lee, B.J. Activation of non-basal <c+a> slip in multicomponent Mg alloys. J. Magnes. Alloy. 2022, 10, 585–597. [Google Scholar] [CrossRef]
- Fan, Y.G.; Wang, L.Y. Medium temperature rheological instability characteristics of AZ31 magnesium alloy. Chin. J. Nonferrous Met. 2005, 15, 5. [Google Scholar]
- Ponge, D.; Gottstenin, G. Necklace for mation during dynamic recrystalization: Mechanisms and impact on flow behavior. Acta Mater. 1998, 46, 69–80. [Google Scholar] [CrossRef]
- Yan, Q.S.; Lai, Z.M.; Lu, J.B. Influence of Clearance on Disc Slitting Surfuce Morphology for Galvanized Steel Sheet. J. Plast. Eng. 2014, 4, 69–73. [Google Scholar]
- Chen, M.H.; Hu, D.C. Research Progresses of Ductile Fracture and Blanked Surface Quality in High speed Blanking. China Mech. Eng. 2016, 27, 1263–1271. [Google Scholar]
- Yin, D.L.; Zhang, K.F.; Wang, G.F.; Han, W.B. Warm deformation behavior of hot rolled AZ31Mg alloy. Mater. Sci. Eng. A 2005, 392, 320–325. [Google Scholar] [CrossRef]
- Montheillet, F.; Lurdos, O.; Damamme, G. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization. Acta Mater. 2009, 57, 1602–1612. [Google Scholar] [CrossRef]
- Dong, J.R.; Zhang, D.F.; Dong, Y.F.; Pan, F.S.; Chai, S.S. Critical damage value of AZ31B magnesium alloy with different temperatures and strain rates. Rare Met. 2021, 40, 137–142. [Google Scholar] [CrossRef]
Al | Zn | Mn | Fe | Si | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|
3.37 | 0.86 | 0.29 | 0.004 | 0.1 | 0.0015 | 0.0047 | Bal. |
T | BC | T | BC | T | BC | T | BC | T | BC |
---|---|---|---|---|---|---|---|---|---|
20 | 0.7 | 100 | 0.7 | 150 | 0.7 | 200 | 0.7 | 250 | 0.7 |
20 | 0.8 | 100 | 0.8 | 150 | 0.8 | 200 | 0.8 | 250 | 0.8 |
20 | 1 | 100 | 1 | 150 | 1 | 200 | 1 | 250 | 1 |
T | 20 | 100 | 150 | 200 | 250 | |
---|---|---|---|---|---|---|
BC | ||||||
8% | ||||||
10% | ||||||
12% |
20 °C/10% | 100 °C/10% | 150 °C/10% |
200 °C/10% | 250 °C/10% | 150 °C/12% |
Factor | Blade Clearance (%) | Thermal (°C) | |
---|---|---|---|
Level | |||
1 | 8 | 100 | |
2 | 10 | 150 | |
3 | 12 | 200 |
Column Number | 1 Blade Clearance | 2 Thermal | Simulation Results (mm) | Experimental Results (mm) | |
Test Number | |||||
1 | 1 | 1 | 1.96816 | 4 | |
2 | 1 | 2 | 3.40405 | 3.9 | |
3 | 1 | 3 | 2.23707 | 1.9 | |
4 | 2 | 1 | 2.47552 | 7 | |
5 | 2 | 3 | 3.75847 | 3.9 | |
6 | 2 | 2 | 3.90527 | 8 | |
7 | 3 | 3 | 2.17386 | 1.1 | |
8 | 3 | 1 | 1.50619 | 5 | |
9 | 3 | 2 | 4.80867 | 8.1 | |
Column Number | 1 Blade Clearance | 2 Thermal | 1 Blade Clearance | 2 Thermal | |
Horizontal Result and Range | Simulation Results (mm) | Simulation Results (mm) | Experimental Result (mm) | Experimental Result (mm) | |
K1 | 7.60928 | 5.94987 | 9.8 | 16 | |
K2 | 10.13926 | 12.11799 | 18.9 | 20 | |
K3 | 8.48872 | 8.1694 | 14.2 | 6.9 | |
k1 | 2.53643 | 1.98329 | 3.27 | 5.33 | |
k2 | 3.37975 | 4.03933 | 6.3 | 6.67 | |
k3 | 2.82957 | 2.72313 | 4.73 | 2.3 | |
R | 0.84332 | 2.05604 | 3.03 | 4.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Ma, L.; Jia, W. Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate. Crystals 2022, 12, 661. https://doi.org/10.3390/cryst12050661
Meng Y, Ma L, Jia W. Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate. Crystals. 2022; 12(5):661. https://doi.org/10.3390/cryst12050661
Chicago/Turabian StyleMeng, Yue, Lifeng Ma, and Weitao Jia. 2022. "Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate" Crystals 12, no. 5: 661. https://doi.org/10.3390/cryst12050661
APA StyleMeng, Y., Ma, L., & Jia, W. (2022). Experimental and Simulation Analysis of Warm Shearing Process Parameters for Rolled AZ31B Magnesium Alloy Plate. Crystals, 12(5), 661. https://doi.org/10.3390/cryst12050661