High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Perovskite Top Cell
3.2. CIGS Bottom Cell
3.3. Perovskite/CIGS Tandem Solar Cell
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Trinh, X.-L.; Kim, H.-C. Fully solution-processed perovskite solar cells fabricated by lamination process with silver nanoparticle film as top electrode. Energy Rep. 2020, 6, 1297–1303. [Google Scholar] [CrossRef]
- Yousaf, S.A.; Imran, M.; Ikram, M.; Ali, S. The critical role of metal oxide electron transport layer for perovskite solar cell. Appl. Nanosci. 2018, 8, 1515–1522. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, A.; Qin, L.; Zhan, Y.; Zhang, C.; Gao, P.; Ye, J.; Li, X. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres. Opt. Lett. 2016, 41, 1329–1332. [Google Scholar] [CrossRef]
- Xu, Z.; Qiao, H.; Huangfu, H.; Li, X.; Guo, J.; Wang, H. Optical absorption of several nanostructures arrays for silicon solar cells. Opt. Commun. 2015, 356, 526–529. [Google Scholar] [CrossRef]
- Bou, A.; Ghahremanirad, E.; Olyaee, S.; Bisquert, J. Inductive Loop in the Impedance Response of Perovskite Solar Cells Explained by Surface Polarization Model. J. Phys. Chem. Lett. 2018, 8, 1402–1406. [Google Scholar]
- Zhang, Y.; Zhai, G.; Gao, L.; Ren, J.; Yu, J.; Yang, Y.; Ha, Y.; Liu, X.; Xu, B.; Wu, Y. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment. Mater. Sci. Semicond. Process. 2020, 117, 105205. [Google Scholar] [CrossRef]
- Ghahremanirad, E.; Olyaee, S.; Nejand, B.A.; Nazari, P.; Ahmadi, V.; Abedi, K. Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 2018, 169, 498–504. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, L.; Li, P.; Fan, B.; Qiu, Y.; Yan, F. Simulation of optimum band structure of HTM-free perovskite solar cells based on ZnO electron transporting layer. Mater. Sci. Semicond. Process. 2018, 90, 1–6. [Google Scholar] [CrossRef]
- Ghahremanirad, E.; Olyaee, S.; Nejand, B.A.; Ahmadi, V.; Abedi, K. Hexagonal Array of Mesoscopic HTM-Based Perovskite Solar Cell with Embedded Plasmonic Nanoparticles. Phys. Status Solidi 2017, 255, 1700291. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Huang, L.; Zeng, R.; Sun, W. Inhibited Aggregation of Lithium Salt in Spiro-OMeTAD for Perovskite Solar Cells. Crystals 2022, 12, 290. [Google Scholar] [CrossRef]
- Ruth, A.; Holland, M.; Rockett, A.; Sanehira, E.; Irwin, M.D.; Steirer, K.X. Charge Compensation by Iodine Covalent Bonding in Lead Iodide Perovskite Materials. Crystals 2022, 12, 88. [Google Scholar] [CrossRef]
- Wang, W. Fabrication of CuInGaSe2 Thin Film Solar Cells using Low-Cost Air-Stable Inks. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2012. [Google Scholar]
- Chandrasekaran, V. Effect of Heat Treatments and Reduced Absorber Layer Thickness on Cu (In, Ga) Se2 Thin Film Solar Cells. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2005. [Google Scholar]
- Al Naser, Q.A.H.; Hilou, H.; Abdulkader, A.F. The Last Development in III-V Multi-Junction Solar Cells. In Proceedings of the 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, Sanya, China, 8–9 August 2009; pp. 373–378. [Google Scholar]
- Jianmin, H.; Yiyong, W.; Jingdong, X.; Dezhuang, Y.; Zhongwei, Z. Degradation behaviors of electrical properties of GaInP/GaAs/Ge solar cells under <200keV proton irradiation. Sol. Energy Mater. Sol. Cells 2008, 92, 1652–1656. [Google Scholar] [CrossRef]
- Takamoto, T.; Kaneiwa, M.; Imaizumi, M.; Yamaguchi, M. InGaP/GaAs-based multijunction solar cells. Prog. Photovolt. Res. Appl. 2005, 13, 495–511. [Google Scholar] [CrossRef]
- Sengar, B.S.; Garg, V.; Kumar, A.; Dwivedi, P. Numerical Simulation: Design of High-Efficiency Planar p-n Homojunction Perovskite Solar Cells. IEEE Trans. Electron Devices 2021, 68, 2360–2364. [Google Scholar] [CrossRef]
- Ghahremanirad, E.; Olyaee, S.; Hedayati, A.M. The Influence of Embedded Plasmonic Nanostructures on the Optical Absorption of Perovskite Solar Cells. Photonics 2019, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Zeng, Q.; Zuo, C.; Zhang, L.; Xiao, H.; Cheng, M.; Hao, F.; Bao, Q.; Yuan, Y.; Wu, W.-Q.; et al. Perovskite-based tandem solar cells. Sci. Bull. 2020, 66, 621–636. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, Z.; Zuo, C.; Ding, L. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J. Semicond. 2021, 42, 020501. [Google Scholar] [CrossRef]
- Hedayati, M.; Olyaee, S.; Ghorashi, S.M.B. The Effect of Adsorbent Layer Thickness and Gallium Concentration on the Efficiency of a Dual-Junction Copper Indium Gallium Diselenide Solar Cell. J. Electron. Mater. 2019, 49, 1454–1461. [Google Scholar] [CrossRef]
- Gharibzadeh, S.; Hossain, I.M.; Fassl, P.; Nejand, B.A.; Abzieher, T.; Schultes, M.; Ahlswede, E.; Jackson, P.; Powalla, M.; Paetzold, U.W.; et al. 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv. Funct. Mater. 2020, 30, 1909919. [Google Scholar] [CrossRef] [Green Version]
- Madan, J.; Shivani; Pandey, R.; Sharma, R. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy 2020, 197, 212–221. [Google Scholar] [CrossRef]
- Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E.; Dou, S.; Wangm, T.; Wang, W.; Li, M. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 2019, 4, 150–159. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, Y.; Xie, H.; Lyu, L.; Liu, X.; Gao, Y.; Huang, J. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 2014, 105, 163508. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Matin, M.; Aliyu, M.M.; Sulaiman, Y.; Amin, N. A Numerical Analysis on CdS: O Window Layer for Higher Efficiency Cdte Solar Cells. In Proceedings of the 2009 1st International Conference on the Developements in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 17–19 December 2009; IEEE: Piscataway, NJ, USA; pp. 1–4. [Google Scholar]
- Sze, S.M. Semiconductor Devices: Physics and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Sutherland, J.E.; Hauser, J.R. A computer analysis of heterojunction and graded composition solar cells. IEEE Trans. Electron Devices 1977, 24, 363–372. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Entner, R. Modeling and Simulation of Negative Bias Temperature Instability; Technische Universitat Wien: Judendorf-Straßengel, Austria, 2007. [Google Scholar]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Lundstrom, M.; Schuelke, R. Numerical analysis of heterostructure semiconductor devices. IEEE Trans. Electron Devices 1983, 30, 1151–1159. [Google Scholar] [CrossRef]
- Elbar, M.; Tobbeche, S.; Merazga, A. Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. Sol. Energy 2015, 122, 104–112. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorashi, S.M.B. Simulation of perovskite solar cell with P3HT hole-transporting materials. J. Nanophotonics 2017, 11, 032510. [Google Scholar] [CrossRef]
- Fotis, K. Modeling and Simulation of a Dual-Junction CIGS Solar Cell using Silvaco ATLAS; Naval Postgraduate School: Monterey, CA, USA, 2012. [Google Scholar]
- Hedayati, M.; Olyaee, S. Proposal of CIGS dual-junction solar cell and investigation of different metal grids effect. Opt. Quantum Electron. 2020, 52, 347. [Google Scholar] [CrossRef]
- Fu, F.; Pisoni, S.; Weiss, T.P.; Feurer, T.; Wäckerlin, A.; Fuchs, P.; Nishiwaki, S.; Zortea, L.; Tiwari, A.N.; Buecheler, S. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells. Adv. Sci. 2018, 5, 1700675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Yang, H.; Xu, Y.; Tang, Y.; Yi, Z.; Zheng, F.; Zhao, F.; Liu, L.; Wu, P.; Li, H. Based on Ultrathin PEDOT:PSS/c-Ge Solar Cells Design and Their Photoelectric Performance. Coatings 2021, 11, 748. [Google Scholar] [CrossRef]
- Balaji, P.; Dauksher, W.J.; Bowden, S.G.; Augusto, A. Flexible Silicon Heterojunction Solar Cells on 40 µm Thin Substrates. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; IEEE: Piscataway, NJ, USA; pp. 1089–1092. [Google Scholar]
- Bashiri, H.; Karami, M.M.A.; Nejad, S.M. Crystalline silicon solar cell engineering to improve fill factor, open circuit voltage, short circuit current and overall cell efficiency. Modares J. Electr. Eng. 2015, 14, 6–14. [Google Scholar]
- Kim, S.; Dao, V.A.; Shin, C.; Balaji, N.; Yi, J. Influence of n-doped μc-Si: H back surface field layer with micro growth in crystalline-amorphous silicon heterojunction solar cells. J. Nanosci. Nnanotechnol. 2014, 14, 9258–9262. [Google Scholar] [CrossRef] [PubMed]
- Meroni, S.M.P.; Hooper, K.E.A.; Dunlop, T.; Baker, J.A.; Worsley, D.; Charbonneau, C.; Watson, T.M. Scribing Method for Carbon Perovskite Solar Modules. Energies 2020, 13, 1589. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Huang, J.; Qin, R.; Yang, G.; Yu, J. Efficient Visible-Near-Infrared Hybrid Perovskite:PbS Quantum Dot Photodetectors Fabricated Using an Antisolvent Additive Solution Process. Adv. Opt. Mater. 2018, 6, 1800979. [Google Scholar] [CrossRef]
Parameters | Symbol | Unit | Perovskite | HTL | ETL | CdS | CIGS |
---|---|---|---|---|---|---|---|
Band gap [35] | eV | 1.9 | 2.31 | 3.5 | 2.4 | 1.4 | |
Electron affinity [36] | 3.9 | 4.08 | 3.9 | 4 | 4.6 | ||
Relative permittivity [35] | F.cm−1 | 6.5 | 9 | 6.5 | 10 | 13.6 | |
Electron mobility [35] | cm2/V.s | 1.6 | 25 | 1.6 | 100 | 100 | |
Hole mobility [35] | cm2/V.s | 0.2 | 100 | 0.2 | 25 | 25 | |
Conduction band effective density of states [35] | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 | ||
Valence band effective density of states [35] | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 |
Perovskite top cell | 41.45 | 1.41 | 51.06 | 21.65 |
CIGS bottom cell | 25.80 | 0.84 | 72.93 | 11.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hedayati, M.; Olyaee, S. High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell. Crystals 2022, 12, 703. https://doi.org/10.3390/cryst12050703
Hedayati M, Olyaee S. High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell. Crystals. 2022; 12(5):703. https://doi.org/10.3390/cryst12050703
Chicago/Turabian StyleHedayati, Maryam, and Saeed Olyaee. 2022. "High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell" Crystals 12, no. 5: 703. https://doi.org/10.3390/cryst12050703
APA StyleHedayati, M., & Olyaee, S. (2022). High-Efficiency p-n Homojunction Perovskite and CIGS Tandem Solar Cell. Crystals, 12(5), 703. https://doi.org/10.3390/cryst12050703