High-Pressure Polymorphism in Hydrogen-Bonded Crystals: A Concise Review
Abstract
:1. Introduction
2. High-Pressure Polymorphism in Amides
3. High-Pressure Polymorphism in Hydrazides
4. High-Pressure Polymorphism in Carboxylic Acid Derivatives
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Cabeza, A.J.; Bernstein, J. Conformational Polymorphism. Chem. Rev. 2014, 114, 2170–2191. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.D.; Lennie, A.R.; Parker, S.F.; Parsons, S.; Pidcock, E.; Richardson, P.R.; Warren, J.E.; Wood, P.A. High-Pressure Polymorphism in Salicylamide. CrystEngComm 2010, 12, 1065–1078. [Google Scholar] [CrossRef] [Green Version]
- Bond, A.D. Polymorphism in Molecular Crystals. Curr. Opin. Solid State Mater. Sci. 2009, 13, 91–97. [Google Scholar] [CrossRef]
- Price, C.P.; Grzesiak, A.L.; Matzger, A.J. Crystalline Polymorph Selection and Discovery with Polymer Heteronuclei. J. Am. Chem. Soc. 2005, 127, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- David, W.I.F.; Shankland, K.; Pulham, C.R.; Blagden, N.; Davey, R.J.; Song, M. Polymorphism in Benzamide. Angew. Chem. 2005, 117, 7194–7197. [Google Scholar] [CrossRef]
- Gavezzotti, A.; Filippini, G. Polymorphic Forms of Organic Crystals at Room Conditions: Thermodynamic and Structural Implications. J. Am. Chem. Soc. 1995, 117, 12299–12305. [Google Scholar] [CrossRef]
- Nangia, A. Conformational Polymorphism in Organic Crystals. Acc. Chem. Res. 2008, 41, 595–604. [Google Scholar] [CrossRef]
- Haleblian, J.; McCrone, W. Pharmaceutical Applications of Polymorphism. J. Pharm. Sci. 1969, 58, 911–929. [Google Scholar] [CrossRef]
- Feng, Y.; Hao, H.; Chen, Y.; Wang, N.; Wang, T.; Huang, X. Enhancement of Crystallization Process of the Organic Pharmaceutical Molecules through High Pressure. Crystals 2022, 12, 432. [Google Scholar] [CrossRef]
- Ali, I.; Tang, J.; Han, Y.; Wei, Z.; Zhang, Y.; Li, J. A Solid-Solid Phase Transformation of Triclabendazole at High Pressures. Crystals 2022, 12, 300. [Google Scholar] [CrossRef]
- Porter, W.W., III; Elie, S.C.; Matzger, A.J. Polymorphism in Carbamazepine Cocrystals. Cryst. Growth Des. 2008, 8, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nauha, E.; Saxell, H.; Nissinen, M.; Kolehmainen, E.; Schäfer, A.; Schlecker, R. Polymorphism and Versatile Solvate Formation of Thiophanate-Methyl. CrystEngComm 2009, 11, 2536–2547. [Google Scholar] [CrossRef] [Green Version]
- Bond, A.D.; Boese, R.; Desiraju, G.R. On the Polymorphism of Aspirin. Angew. Chem. Int. Ed. 2007, 46, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Nath, N.K.; Kumar, S.S.; Nangia, A. Neutral and Zwitterionic Polymorphs of 2-(p-tolylamino) Nicotinic Acid. Cryst. Growth Des. 2011, 11, 4594–4605. [Google Scholar] [CrossRef]
- Yu, L. Polymorphism in Molecular Solids: An Extraordinary System of Red, Orange, and Yellow Crystals. Acc. Chem. Res. 2010, 43, 1257–1266. [Google Scholar] [CrossRef]
- Wilding, M.C.; Wilson, M.; McMillan, P.F. Structural Studies and Polymorphism in Amorphous Solids and Liquids at High Pressure. Chem. Soc. Rev. 2006, 35, 964–986. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.H.B.; Mace, A.; Nangoi, I.M.; Leitão, A.A.; Tulk, C.A.; Molaison, J.J.; Andersson, O.; Lyubartsev, A.P.; Häussermann, U. Exploring High-Pressure Transformations in Low-Z (H2, Ne) Hydrates at Low Temperatures. Crystals 2021, 12, 9. [Google Scholar] [CrossRef]
- Daniel, I.; Oger, P.; Winter, R. Origins of Life and Biochemistry under High-Pressure Conditions. Chem. Soc. Rev. 2006, 35, 858–875. [Google Scholar] [CrossRef]
- Chen, S.; Guzei, I.A.; Yu, L. New Ppolymorphs of ROY and New Record for Coexisting Polymorphs of Solved Structures. J. Am. Chem. Soc. 2005, 127, 9881–9885. [Google Scholar] [CrossRef]
- Vasileiadis, M.; Pantelides, C.C.; Adjiman, C.S. Prediction of the Crystal Structures of Axitinib, a Polymorphic Pharmaceutical Molecule. Chem. Eng. Sci. 2015, 121, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Fabbiani, F.P.; Allan, D.R.; David, W.I.; Moggach, S.A.; Parsons, S.; Pulham, C.R. High-Pressure Recrystallisation—A Route to New Polymorphs and Solvates. CrystEngComm 2004, 6, 504–511. [Google Scholar] [CrossRef]
- Fabbiani, F.P.A.; Pulham, C.R. High-Pressure Studies of Pharmaceutical Compounds and Energetic Materials. Chem. Soc. Rev. 2006, 35, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Laniel, D.; Downie, L.E.; Smith, J.S.; Savard, D.; Murugesu, M.; Desgreniers, S. High Pressure Study of a Highly Energetic Nitrogen-Rich Carbon Nitride, Cyanuric Triazide. J. Chem. Phys. 2014, 141, 234506. [Google Scholar] [CrossRef] [PubMed]
- Fabbiani, F.P.; Allan, D.R.; Dawson, A.; David, W.I.; McGregor, P.A.; Oswald, I.D.; Parsons, S.; Pulham, C.R. Pressure-Induced Formation of a Solvate of Paracetamol. Chem. Commun. 2003, 24, 3004–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbiani, F.P.; Allan, D.R.; Marshall, W.G.; Parsons, S.; Pulham, C.R.; Smith, R.I. High-Pressure Recrystallisation—A Route to New Polymorphs and Solvates of Acetamide and Parabanic acid. J. Cryst. Growth 2005, 275, 185–192. [Google Scholar] [CrossRef]
- Fabbiani, F.P.; Buth, G.; Dittrich, B.; Sowa, H. Pressure-Induced Structural Changes in Wet Vitamin B12. CrystEngComm 2010, 12, 2541–2550. [Google Scholar] [CrossRef]
- Fabbiani, F.P.; Levendis, D.C.; Buth, G.; Kuhs, W.F.; Shankland, N.; Sowa, H. Searching for Novel Crystal Forms by in situ High-Pressure Crystallisation: The Example of Gabapentin Heptahydrate. CrystEngComm 2010, 12, 2354–2360. [Google Scholar] [CrossRef]
- Fabbiani, F.P.; Allan, D.R.; Parsons, S.; Pulham, C.R. Exploration of the High-Pressure Behaviour of Polycyclic Aromatic Hydrocarbons: Naphthalene, Phenanthrene and Pyrene. Acta Crystallogr. Sect. B Struct. Sci. 2006, 62, 826–842. [Google Scholar] [CrossRef] [Green Version]
- Oswald, I.D.; Chataigner, I.; Elphick, S.; Fabbiani, F.P.; Lennie, A.R.; Maddaluno, J.; Marshall, W.G.; Prior, T.J.; Pulham, C.R.; Smith, R.I. Putting Pressure on Elusive Polymorphs and Solvates. CrystEngComm 2009, 11, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Van De Streek, J.; Fabbiani, F.; Hidber, P.; Grassmann, O. Combined Crystal Structure Prediction and High-Pressure Crystallization in Rational Pharmaceutical Polymorph Screening. Nat. Commun. 2015, 6, 7793. [Google Scholar] [CrossRef] [Green Version]
- Fabbiani, F.P.; Pulham, C.R.; Warren, J.E. A High-Pressure Polymorph of Propionamide from in situ High-Pressure Crystallisation from Solution. Z. Für Krist. Cryst. Mater. 2014, 229, 667–675. [Google Scholar] [CrossRef]
- Fabbiani, F.P.; Dittrich, B.; Florence, A.J.; Gelbrich, T.; Hursthouse, M.B.; Kuhs, W.F.; Shankland, N.; Sowa, H. Crystal Structures with a Challenge: High-Pressure Crystallisation of Ciprofloxacin Sodium Salts and Their Recovery to Ambient Pressure. CrystEngComm 2009, 11, 1396–1406. [Google Scholar] [CrossRef]
- Minkov, V.S.; Goryainov, S.V.; Boldyreva, E.V.; Görbitz, C.H. Raman Study of Pressure-Induced Phase Transitions in Crystals of Orthorhombic and Monoclinic Polymorphs of L-Cysteine: Dynamics of the Side Chain. J. Raman Spectrosc. 2010, 41, 1748–1758. [Google Scholar] [CrossRef]
- Boldyreva, E.; Ivashevskaya, S.; Sowa, H.; Ahsbahs, H.; Weber, H.-P. Effect of High Pressure on Crystalline Glycine: A New High-Pressure Polymorph. Dokl. Phys. Chem. 2004, 396, 111–114. [Google Scholar] [CrossRef]
- Boldyreva, E.V.; Ivashevskaya, S.N.; Sowa, H.; Ahsbahs, H.; Weber, H.-P. Effect of Hydrostatic Pressure on the γ-Polymorph of Glycine.1. A polymorphic transition into a New δ-Form. Z. Für Krist. Cryst. Mater. 2005, 220, 50–57. [Google Scholar] [CrossRef]
- Dawson, A.; Allan, D.R.; Belmonte, S.A.; Clark, S.J.; David, W.I.; McGregor, P.A.; Parsons, S.; Pulham, C.R.; Sawyer, L. Effect of High Pressure on the Crystal Structures of Polymorphs of Glycine. Cryst. Growth Des. 2005, 5, 1415–1427. [Google Scholar] [CrossRef] [Green Version]
- Goryainov, S.; Kolesnik, E.; Boldyreva, E. A Reversible Pressure-Induced Phase Transition in β-Glycine at 0.76 GPa. Phys. B Condens. Matter 2005, 357, 340–347. [Google Scholar] [CrossRef]
- Fabbiani, F.P.A.; Allan, D.R.; Parsons, S.; Pulham, C.R. An Exploration of the Polymorphism of Piracetam using High Pressure. CrystEngComm 2005, 7, 179–186. [Google Scholar] [CrossRef]
- Fabbiani, F.P.; Allan, D.R.; David, W.I.; Davidson, A.J.; Lennie, A.R.; Parsons, S.; Pulham, C.R.; Warren, J.E. High-Pressure Studies of Pharmaceuticals: An Exploration of the Behavior of Piracetam. Cryst. Growth Des. 2007, 7, 1115–1124. [Google Scholar] [CrossRef]
- Prins, L.J.; Reinhoudt, D.N.; Timmerman, P. Noncovalent Synthesis Using Hydrogen Bonding. Angew. Chem. Int. Ed. 2001, 40, 2382–2426. [Google Scholar] [CrossRef]
- Vippagunta, S.R.; Brittain, H.G.; Grant, D.J. Crystalline solids. Adv. Drug Deliv. Rev. 2001, 48, 3–26. [Google Scholar] [CrossRef]
- Steiner, T. The Hydrogen Bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Abe, Y.; Harata, K.; Fujiwara, M.; Ohbu, K. Molecular Arrangement and Intermolecular Hydrogen Bonding in Crystals of Methyl 6-O-Acyl-D-Glycopyranosides. Langmuir 1996, 12, 636–640. [Google Scholar] [CrossRef]
- Boldyreva, E.V. High-Pressure Studies of the Hydrogen Bond Networks in Molecular Crystals. J. Mol. Struct. 2004, 700, 151–155. [Google Scholar] [CrossRef]
- Boldyreva, E.V. High-pressure Studies of the Anisotropy of Structural Distortion of Molecular Crystals. J. Mol. Struct. 2003, 647, 159–179. [Google Scholar] [CrossRef]
- Joseph, J.; Jemmis, E.D. Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. J. Am. Chem. Soc. 2007, 129, 4620–4632. [Google Scholar] [CrossRef]
- Yan, T.T.; Wang, K.; Tan, X.; Liu, J.; Liu, B.B.; Zou, B. Exploration of the Hydrogen-Bonded Energetic Material Carbohydrazide at High Pressures. J. Phys. Chem. C 2014, 118, 22960–22967. [Google Scholar] [CrossRef]
- Bi, J.; Tao, Y.; Hu, J.; Wang, H.; Zhou, M. High-Pressure Investigations on Urea Hydrogen Peroxide. Chem. Phys. Lett. 2022, 787, 139230. [Google Scholar] [CrossRef]
- Yan, T.T.; Wang, K.; Tan, X.; Yang, K.; Liu, B.B.; Zou, B. Pressure-Induced Phase Transition in N–H···O Hydrogen-Bonded Molecular Crystal Biurea: Combined Raman Scattering and X-ray Diffraction Study. J. Phys. Chem. C 2014, 118, 15162–15168. [Google Scholar] [CrossRef]
- Yan, T.T.; Li, S.U.; Wang, K.; Tan, X.; Jiang, Z.M.; Yang, K.; Liu, B.B.; Zou, G.; Zou, B. Pressure-Induced Phase Transition in N–H··· O Hydrogen-Bonded Molecular Crystal Oxamide. J. Phys. Chem. B 2012, 116, 9796–9802. [Google Scholar] [CrossRef]
- Moggach, S.A.; Allan, D.R.; Morrison, C.A.; Parsons, S.; Sawyer, L. Effect of Pressure on the Crystal Structure of L-Serine-I and the Crystal Structure of L-Serine-Ii at 5.4 Gpa. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 58–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldyreva, E.; Shakhtshneider, T.; Ahsbahs, H.; Sowa, H.; Uchtmann, H. Effect of High Pressure on the Polymorphs of Paracetamol. J. Therm. Anal. Calorim. 2002, 68, 437–452. [Google Scholar]
- Allan, D.; Marshall, W.; Francis, D.; Oswald, I.; Pulham, C.; Spanswick, C. The Crystal Structures of the Low-Temperature and High-Pressure Polymorphs of Nitric Acid. Dalton Trans. 2010, 39, 3736–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, D.M.; Spanswick, C.K.; Middlemiss, D.S.; Abbas, N.; Pulham, C.R.; Morrison, C.A. A New Polymorph of N, N′-Dimethylurea Characterized by X-Ray Diffraction and First-Principles Lattice Dynamics Calculations. J. Phys. Chem. A 2009, 113, 5998–6003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munday, L.B.; Chung, P.W.; Rice, B.M.; Solares, S.D. Simulations of High-Pressure Phases in Rdx. J. Phys. Chem. B 2011, 115, 4378–4386. [Google Scholar] [CrossRef] [PubMed]
- Oswald, I.D.; Urquhart, A.J. Polymorphism and Polymerisation of Acrylic and Methacrylic Acid at High Pressure. CrystEngComm 2011, 13, 4503–4507. [Google Scholar] [CrossRef] [Green Version]
- Valkenburg, A.V., Jr. Visual Observations of High Pressure Transitions. Rev. Sci. Instrum. 1962, 33, 1462. [Google Scholar] [CrossRef]
- Moggach, S.A.; Parsons, S.; Wood, P.A. High-Pressure Polymorphism in Amino Acids. Cryst. Rev. 2008, 14, 143–184. [Google Scholar] [CrossRef]
- Bassett, W.A. Diamond Anvil Cell, 50th Birthday. High Press. Res. 2009, 29, 163–186. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.; Munsch, P.; Le Marchand, G. Hydrostatic Limits of 11 Pressure Transmitting Media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.-A.; Bell, P.M. Calibration of the Ruby Pressure Gauge to 800 Kbar under Quasi-Hydrostatic Conditions. J. Geophys. Res. Solid Earth 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Becker, C.; Dressman, J.; Amidon, G.; Junginger, H.; Kopp, S.; Midha, K.; Shah, V.; Stavchansky, S.; Barends, D. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Pyrazinamide. J. Pharm. Sci. 2008, 97, 3709–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, R.A.; Maria, T.M.; Évora, A.O.; Feiteira, J.C.; Silva, M.R.; Beja, A.M.; Canotilho, J.; Eusébio, M.E.S. A New Insight into Pyrazinamide Polymorphic Forms and Their Thermodynamic Relationships. Cryst. Growth Des. 2010, 10, 274–282. [Google Scholar] [CrossRef]
- Borba, A.; Albrecht, M.; Gómez-Zavaglia, A.; Suhm, M.A.; Fausto, R. Low Temperature Infrared Spectroscopy Study of Pyrazinamide: From the Isolated Monomer to the Stable Low Temperature Crystalline Phase. J. Phys. Chem. A 2010, 114, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Wang, K.; Li, S.U.; Yuan, H.S.; Yan, T.T.; Liu, J.; Yang, K.; Liu, B.B.; Zou, G.T.; Zou, B. Exploration of the Pyrazinamide Polymorphism at High Pressure. J. Phys. Chem. B 2012, 116, 14441–14450. [Google Scholar] [CrossRef]
- Cherukuvada, S.; Thakuria, R.; Nangia, A. Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy. Cryst. Growth Des. 2010, 10, 3931–3941. [Google Scholar] [CrossRef]
- Dreger, Z.A.; Gupta, Y.M. High Pressure Raman Spectroscopy of Single Crystals of Hexahydro-1, 3, 5-Trinitro-1, 3, 5-Triazine (Rdx). J. Phys. Chem. B 2007, 111, 3893–3903. [Google Scholar] [CrossRef]
- Chieh, P.C.; Subramanian, E.; Trotter, J. Crystal Structure of Malonamide. J. Chem. Soc. 1970, 179–184. [Google Scholar] [CrossRef]
- Nichol, G.S.; Clegg, W. Malonamide: An Orthorhombic Polymorph. Acta Cryst. 2005, 61, o3427–o3429. [Google Scholar] [CrossRef]
- Nichol, G.S.; Clegg, W. Malonamide: A Tetragonal Polymorph. Acta Cryst. 2005, 61, o3424–o3426. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.T.; Xi, D.Y.; Ma, Z.N.; Wang, X.; Wang, Q.J.; Li, Q. Pressure-Induced Phase Transition in N–H⋯O Hydrogen-Bonded Crystalline Malonamide. RSC Adv. 2017, 7, 22105–22111. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, G.T.; Maluszynska, H. A Survey of Hydrogen Bond Geometries in the Crystal Structures of Amino Acids. Int. J. Biol. Macromol 1982, 4, 173–185. [Google Scholar] [CrossRef]
- Watanabe, S.; Abe, Y.; Yoshizaki, R. Tunneling Rotation of Two Inequivalent Methyl Groups in Orthorhombic Acetamide. J. Phys. Soc. Jpn. 1986, 55, 2400–2409. [Google Scholar] [CrossRef]
- Kang, L.; Wang, K.; Li, S.R.; Li, X.; Zou, B. Pressure-Induced Phase Transition in Hydrogen-Bonded Molecular Crystal Acetamide: Combined Raman Scattering and X-Ray Diffraction Study. RSC Adv. 2015, 5, 84703–84710. [Google Scholar] [CrossRef]
- Cradwick, P.D. Crystal Structure of the Growth Inhibitor, ‘Maleic Hydrazide’(1, 2-Dihydropyridazine-3, 6-Dione). J. Chem. Soc. Perkin Trans. 1976, 2, 1386–1389. [Google Scholar] [CrossRef]
- Katrusiak, A. A New Polymorph of Maleic Hydrazide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1993, 49, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Katrusiak, A. Polymorphism of Maleic Hydrazide. I. Acta Crystallogr. Sect. B Struct. Sci. 2001, 57, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liu, J.; Yang, K.; Liu, B.B.; Zou, B. High-Pressure-Induced Polymorphic Transformation of Maleic Hydrazide. J. Phys. Chem. C 2014, 118, 8122–8127. [Google Scholar] [CrossRef]
- Ahn, S.; Guo, F.; Kariuki, B.M.; Harris, K.D. Abundant Polymorphism in a System with Multiple Hydrogen-Bonding Opportunities: Oxalyl Dihydrazide. J. Am. Chem. Soc. 2006, 128, 8441–8452. [Google Scholar] [CrossRef]
- Wen, S.; Beran, G.J. Crystal Polymorphism in Oxalyl Dihydrazide: Is Empirical Dft-D Accurate Enough? J. Chem. Theory Comput. 2012, 8, 2698–2705. [Google Scholar] [CrossRef]
- Presti, D.; Pedone, A.; Menziani, M.C.; Civalleri, B.; Maschio, L. Oxalyl Dihydrazide Polymorphism: A Periodic Dispersion-Corrected Dft and Mp2 Investigation. CrystEngComm 2014, 16, 102–109. [Google Scholar] [CrossRef]
- Tan, X.; Wang, K.; Yan, T.T.; Li, X.; Liu, J.; Yang, K.; Liu, B.B.; Zou, G.T.; Zou, B. Discovery of High-Pressure Polymorphs for a Typical Polymorphic System: Oxalyl Dihydrazide. J. Phys. Chem. C 2015, 119, 10178–10188. [Google Scholar] [CrossRef]
- Jarchow, O.; Kühn, L. Die Kristallstruktur Von A-P-Aminobenzoesäure. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 222–224. [Google Scholar] [CrossRef]
- Banerjee, A.; Agrawal, P.; Gupta, R. Nmr Study of Solid P-Amino Benzoic Acid–Structure and Group Rotation. J. Prakt. Chem. 1973, 315, 251–257. [Google Scholar] [CrossRef]
- Gracin, S.; Rasmuson, Å.C. Polymorphism and Crystallization of P-Aminobenzoic Acid. Cryst. Growth Des. 2004, 4, 1013–1023. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Ching, C.B. In Situ Monitoring of Solid-State Transition of P-Aminobenzoic Acid Polymorphs Using Raman Spectroscopy. J. Raman Spectrosc. 2009, 40, 870–875. [Google Scholar] [CrossRef]
- Yan, T.T.; Wang, K.; Duan, D.F.; Tan, X.; Liu, B.B.; Zou, B. P-Aminobenzoic Acid Polymorphs under High Pressures. RSC Adv. 2014, 4, 15534–15541. [Google Scholar] [CrossRef]
- Griffiths, P. Crystallographic Data for Cinchomeronic Acid and Its Hydrochloride. Acta Cryst. 1963, 16, 1074. [Google Scholar] [CrossRef] [Green Version]
- Takusagawa, F.; Hirotsu, K.; Shimada, A. The Crystal Structure of Cinchomeronic Acid. Bull. Chem. Soc. Jpn. 1973, 46, 2669–2675. [Google Scholar] [CrossRef] [Green Version]
- Braga, D.; Maini, L.; Fagnano, C.; Taddei, P.; Chierotti, M.R.; Gobetto, R. Polymorphism in Crystalline Cinchomeronic Acid. Chem. Eur. J. 2007, 13, 1222–1230. [Google Scholar] [CrossRef]
- Karabacak, M.; Bilgili, S.; Atac, A. Molecular Structure Investigation of Neutral, Dimer and Anion Forms of 3, 4-Pyridinedicarboxylic Acid: A Combined Experimental and Theoretical Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Evans, I.R.; Howard, J.A.; Evans, J.S.; Postlethwaite, S.R.; Johnson, M.R. Polymorphism and Hydrogen Bonding in Cinchomeronic Acid: A Variable Temperature Experimental and Computational Study. CrystEngComm 2008, 10, 1404–1409. [Google Scholar] [CrossRef]
- Tong, M.-L.; Wang, J.; Hu, S.; Batten, S.R. A New (3, 4)-Connected Three-Dimensional Anionic Porous Coordination Net Templated by Me4n+ Cations. Inorg. Chem. Commun. 2005, 8, 48–51. [Google Scholar] [CrossRef]
- Senevirathna, M.; Pitigala, P.; Perera, V.; Tennakone, K. Molecular Rectification: Application in Dye-Sensitized Solar Cells. Langmuir 2005, 21, 2997–3001. [Google Scholar] [CrossRef]
- Yan, T.T.; Xi, D.Y.; Wang, J.H.; Fan, X.F.; Wan, Y.; Zhang, L.X.; Wang, K. High-Pressure-Induced Phase Transition in Cinchomeronic Acid Polycrystalline Form-I. Chin. Phys. B 2019, 28, 016104. [Google Scholar] [CrossRef]
- Yan, T.T.; Deng, Y.Y.; Yu, Z.Q.; John, E.; Han, R.M.; Yao, Y.; Liu, Y. Exploring the Polymorphism of Cinchomeronic Acid at High Pressure. J. Phys. Chem. C 2021, 125, 8582–8588. [Google Scholar] [CrossRef]
- Yan, T.T.; Xi, D.Y.; Ma, Z.N.; Fan, X.F.; Li, Y. Pressure-Induced Reversible Amorphization in Hydrogen-Bonded Crystalline Phenyl Carbamate Form-I. J. Phys. Chem. C 2017, 121, 19365–19372. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Xi, D.; Fang, Q.; Zhang, Y.; Wang, J.; Wang, X. High-Pressure Polymorphism in Hydrogen-Bonded Crystals: A Concise Review. Crystals 2022, 12, 739. https://doi.org/10.3390/cryst12050739
Yan T, Xi D, Fang Q, Zhang Y, Wang J, Wang X. High-Pressure Polymorphism in Hydrogen-Bonded Crystals: A Concise Review. Crystals. 2022; 12(5):739. https://doi.org/10.3390/cryst12050739
Chicago/Turabian StyleYan, Tingting, Dongyang Xi, Qiuxue Fang, Ye Zhang, Junhai Wang, and Xiaodan Wang. 2022. "High-Pressure Polymorphism in Hydrogen-Bonded Crystals: A Concise Review" Crystals 12, no. 5: 739. https://doi.org/10.3390/cryst12050739
APA StyleYan, T., Xi, D., Fang, Q., Zhang, Y., Wang, J., & Wang, X. (2022). High-Pressure Polymorphism in Hydrogen-Bonded Crystals: A Concise Review. Crystals, 12(5), 739. https://doi.org/10.3390/cryst12050739