Effect of B Addition on Microstructure and Mechanical Properties of High-Strength 13Mn TRIP Steel with Different Annealing Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of the Experimental Steel after Annealing
3.2. Mechanical Properties
4. Discussion
4.1. Influence of Annealing Temperature on the Microstructure Evolution
4.2. Influence of B Addition on Microstructure Evolution
4.3. Enhanced Mechanical Properties by the Introduction of M2B
5. Conclusions
- Except for the appearance of M2B in 30B steel, similar phase constitutions were observed in 0B steel and 30B steel with the same annealing temperature. When the annealing was lower than 700 °C, the microstructure contained elongated γ along the rolling direction. When annealed at 800 °C or 900 °C, ε and α′ were formed due to recrystallization of γ. The fraction of ε + α′ increased in 0B-900 and 30B-900 due to their larger AGSs.
- With the addition of B, dispersed distributed M2B was formed in 30B steel, which resulted in the refinement of γ grains during both the hot-rolling and annealing processes. As SFE is influenced by grain size, the addition of B can give rise to SFE. Hence, less ε + α′ was formed in 30B steel compared with 0B steel when annealed at 800 °C or 900 °C.
- The addition of B increased the YS and the TS of 30B steel. The improvements are brought by the grain refinement, as well as the hindering of dislocation movement and promoted phase transformation due to M2B dispersion. Meanwhile, M2B cracked early during deformation, converted the fracture mechanism and caused the loss of TE.
- B addition significantly restrained the decline of TS and TE when annealed at high temperatures. Whereas the TS and TE of 0B steel decreased significantly with annealing temperatures higher than 800 °C, the more sufficiently triggered TRIP effect in 30B steel compromised the loss of TS and increased the TE. Consequently, the TS of 30B steel was maintained at higher than 1200 MPa and reached the best TS × TE of 53.62 GPa% when annealed at 800 °C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herrera, C.; Ponge, D.; Raabe, D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 2011, 59, 4653–4664. [Google Scholar] [CrossRef]
- Harjo, S.; Tsuchida, N.; Abe, J.; Gong, W. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction. Sci. Rep. 2017, 7, 15149. [Google Scholar] [CrossRef]
- Zhao, J.l.; Xi, Y.; Shi, W.; Li, L. Microstructure and Mechanical Properties of High Manganese TRIP Steel. J. Iron Steel Res. Int. 2012, 19, 57–62. [Google Scholar] [CrossRef]
- Gao, P.; Chen, W.; Li, F.; Ning, B.; Zhao, Z. New crystallography insights of retained austenite transformation in an intercritical annealed quenching and partitioning steel. Mater. Lett. 2020, 273, 127955. [Google Scholar] [CrossRef]
- Nanda, T.; Singh, V.; Singh, V.; Chakraborty, A.; Sharma, S. Third generation of advanced high-strength steels: Processing routes and properties. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 209–238. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Z. Thermomechanical processing of advanced high strength steels. Prog. Mater. Sci. 2018, 94, 174–242. [Google Scholar] [CrossRef]
- Cho, L.; Seo, E.J.; de Cooman, B.C. Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel. Scr. Mater. 2016, 123, 69–72. [Google Scholar] [CrossRef]
- Seo, E.J.; Cho, L.; Estrin, Y.; de Cooman, B.C. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016, 113, 124–139. [Google Scholar] [CrossRef]
- Li, Q.; Huang, X.; Huang, W. EBSD Analysis of Relationship Between Microstructural Features and Toughness of a Medium-Carbon Quenching and Partitioning Bainitic Steel. J. Mater. Eng. Perform. 2017, 26, 6149–6157. [Google Scholar] [CrossRef]
- Gao, P.; Chen, W.; Li, F.; Ning, B.; Zhao, Z. Quasi-Situ Characterization of Deformation in Low-Carbon Steel with Equiaxed and Lamellar Microstructure Treated by the Quenching and Partitioning Process. Acta Met. Sin. Engl. Lett. 2020, 33, 1657–1665. [Google Scholar] [CrossRef]
- Wang, L.; Speer, J.G. Quenching and Partitioning Steel Heat Treatment. Met. Microstruct. Anal. 2013, 2, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Dai, Z.; Huang, M.; Yang, Z.; Zhang, C.; Chen, H. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel. Acta Mater. 2018, 147, 59–69. [Google Scholar] [CrossRef]
- Shi, J.; Sun, X.; Wang, M.; Hui, W.; Dong, H.; Cao, W. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr. Mater. 2010, 63, 815–818. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhao, J.; Cao, W.Q.; Shi, J.; Wang, C.Y.; Wang, C.; Li, J.; Dong, H. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn). Mater. Sci. Eng. A 2012, 532, 435–442. [Google Scholar] [CrossRef]
- Cao, W.Q.; Wang, C.; Shi, J.; Wang, M.Q.; Hui, W.J.; Dong, H. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing. Mater. Sci. Eng. A 2011, 528, 6661–6666. [Google Scholar] [CrossRef]
- Hu, B.; He, B.b.; Cheng, G.J.; Yen, H.W.; Huang, M.X.; Luo, H.W. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater. 2019, 174, 131–141. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010, 58, 5129–5141. [Google Scholar] [CrossRef]
- De Cooman, B.C.; Estrin, Y.; Kim, S.K. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018, 142, 283–362. [Google Scholar] [CrossRef]
- Allain, S.; Chateau, J.P.; Bouaziz, O.; Migot, S.; Guelton, N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater. Sci. Eng. A 2004, 387–389, 158–162. [Google Scholar] [CrossRef]
- Yang, W.S.; Wan, C.M. The influence of aluminium content to the stacking fault energy in Fe-Mn-Al-C alloy system. J. Mater. Sci. 1990, 25, 1821–1823. [Google Scholar] [CrossRef]
- Suh, D.W.; Park, S.J.; Lee, C.H.; Kim, S.J. Microstructure and mechanical behaviors of 0.1C-13Mn metastable austenitic steel. Met. Mater. Trans. A 2009, 40, 264–268. [Google Scholar] [CrossRef] [Green Version]
- McGrath, M.C.; van Aken, D.C.; Medvedeva, N.I.; Medvedeva, J.E. Work hardening behavior in steel with multiple TRIP mechanisms. Met. Mater. Trans. A 2013, 44, 4634–4643. [Google Scholar] [CrossRef] [Green Version]
- Field, D.M.; Qing, J.; van Aken, D.C. Chemistry and Properties of Medium-Mn Two-Stage TRIP Steels. Met. Mater. Trans. A 2018, 49, 4615–4632. [Google Scholar] [CrossRef]
- Naderi, M.; Durrenberger, L.; Molinari, A.; Bleck, W. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Mater. Sci. Eng. A 2008, 478, 130–139. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Jones, R.B.; Younes, C.M.; Heard, P.J.; Wild, R.K.; Flewitt, P.E.J. The effect of the microscale distribution of boron on the yield strength of C–Mn steels subjected to neutron irradiation. Acta Mater. 2002, 50, 4395–4417. [Google Scholar] [CrossRef]
- Jahazi, M.; Jonas, J.J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries. Mater. Sci. Eng. A 2002, 335, 49–61. [Google Scholar] [CrossRef]
- Suzuki, S.; Abiko, K.; Kimura, H. Phosphorus segregation related to the grain boundary structure in an Fe-P alloy. Scr. Met. 1981, 15, 1139–1143. [Google Scholar] [CrossRef]
- Branagan, D.; Frerichs, A.; Meacham, B.; Ma, L.; Yakubtsov, I.; Cheng, S.; Sergueeva, A. New Mechanisms, Enabling Structures, and Advanced Properties Resulting in a New Class of 3rd Generation AHSS Sheet; SAE Technical Paper 2014-01-0989; SAE International: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Askari-Paykani, M.; Shahverdi, H.R.; Miresmaeili, R. Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66−x CrNiB x Si (x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels. Met. Mater. Trans. A 2016, 47, 5423–5437. [Google Scholar] [CrossRef]
- Askari-Paykani, M.; Shahverdi, H.R.; Miresmaeili, R. First and third generations of advanced high-strength steels in a FeCrNiBSi system. J. Mater. Process. Technol. 2016, 238, 383–394. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Liang, J.; Cao, R.; Zhao, Z. Microstructural evolution and strain hardening mechanism of a boron-containing metastable austenitic steel. Mater. Sci. Technol. 2019, 35, 2013–2023. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Liang, J.; Cao, R.; Zhao, Z. Effects of boron on mechanical properties of a hot-rolled 13% Mn metastable austenitic steel. Mater. Lett. 2018, 233, 314–317. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Hill, R.J. Expanded Use of the Rietveld Method in Studies of Phase Abundance in Multiphase Mixtures. Powder Diffr. 1991, 6, 74–77. [Google Scholar] [CrossRef]
- Hill, R.J. Rietveld refinement round robin. I. Analysis of standard X-ray and neutron data for PbSO4. J. Appl. Crystallogr. 1992, 25, 589–610. [Google Scholar] [CrossRef] [Green Version]
- McCusker, L.B.; von Dreele, R.B.; Cox, D.E.; Louër, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999, 32, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Kim, J.; Kane, S.N.; de Cooman, B.C. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 2011, 59, 6809–6819. [Google Scholar] [CrossRef]
- Li, F.; Gao, P.; Chen, Y.; Li, C.; Shang, X.; Wan, P.; Chen, W.; Kang, T.; Zhao, Z.; An, K. In-situ neutron diffraction investigation of two-stage martensitic transformation in a 13%Mn steel with serrated deformation. Mater. Sci. Eng. A 2022, 840, 142955. [Google Scholar] [CrossRef]
- Olson, G.B.; Cohen, M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Met. Mater. Trans. A 1976, 7, 1897–1904. [Google Scholar] [CrossRef]
- Dumay, A.; Chateau, J.-P.; Allain, S.; Migot, S.; Bouaziz, O. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater. Sci. Eng. A 2008, 483–484, 184–187. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Zhao, Y.; Yuan, X.; Misra, R.D.K. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel. Mater. Sci. Eng. A 2018, 715, 257–265. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Choi, C. Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Met. Mater. Trans. A 2000, 31, 355–360. [Google Scholar] [CrossRef]
- Takaki, S.; Nakatsu, H.; Tokunaga, Y. Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy. Mater. Trans. JIM 1993, 34, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, O.A. Stacking Fault Energy Maps of Fe–Mn–Al–C–Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions. J. Eng. Mater. Technol. 2016, 138, 041010. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Tsuchiyama, T.; Uchida, H.; Kataoka, K.; Takaki, S. Fabrication of Fine-grained High Nitrogen Austenitic Steels through Mechanical Alloying Treatment. ISIJ Int. 2002, 42, 1438–1443. [Google Scholar] [CrossRef] [Green Version]
Steel | Fe | C | Mn | Cr | Ni | Si | Cu | B |
---|---|---|---|---|---|---|---|---|
0B | Bal. | 0.12 | 13.0 | 2.00 | 1.20 | 2.50 | 1.84 | <0.01 |
30B | Bal. | 0.12 | 12.8 | 1.98 | 1.19 | 2.43 | 1.82 | 0.28 |
Sample | Phase Fraction (%) | AGS (μm) | |||
---|---|---|---|---|---|
γ | ε | α′ | M2B | ||
0B-HR | 100.00 | 0.00 | 0.00 | 0.00 | 10.11 |
0B-600 | 100.00 | 0.00 | 0.00 | 0.00 | 10.44 |
0B-700 | 100.00 | 0.00 | 0.00 | 0.00 | 9.70 |
0B-800 | 63.80 | 20.80 | 15.40 | 0.00 | 17.82 |
0B-900 | 50.50 | 18.60 | 30.80 | 0.00 | 24.50 |
30B-HR | 94.03 | 0.00 | 0.00 | 5.97 | 5.25 |
30B-600 | 93.98 | 0.00 | 0.00 | 6.02 | 5.26 |
30B-700 | 93.79 | 0.00 | 0.00 | 6.21 | 5.95 |
30B-800 | 78.41 | 10.53 | 5.01 | 6.05 | 10.37 |
30B-900 | 56.55 | 24.22 | 13.25 | 5.98 | 17.95 |
Sample | Phase Fraction (%) | Rwp(%) | χ2 | ||
---|---|---|---|---|---|
γ | ε | α′ | |||
0B-800 | 65.31 | 22.71 | 11.98 | 10.86 | 1.85 |
0B-900 | 51.03 | 23.46 | 23.51 | 10.78 | 1.99 |
30B-800 | 81.63 | 13.80 | 4.57 | 10.22 | 1.89 |
30B-900 | 58.69 | 24.75 | 16.55 | 11.53 | 1.83 |
Sample | YS (MPa) | TS (MPa) | TE (%) | TS × TE (GPa·%) |
---|---|---|---|---|
0B-600 | 354 | 1195 | 43.4 | 51.86 |
0B-700 | 347 | 1207 | 45.3 | 54.67 |
0B-800 | 302 | 1153 | 42.1 | 48.54 |
0B-900 | 254 | 1049 | 37.3 | 39.12 |
30B-600 | 454 | 1239 | 36.8 | 45.57 |
30B-700 | 450 | 1271 | 37.3 | 47.34 |
30B-800 | 421 | 1230 | 43.6 | 53.62 |
30B-900 | 388 | 1225 | 43.0 | 52.72 |
Sample | Phase Fraction (%) | Rwp(%) | χ2 | ||
---|---|---|---|---|---|
γ | ε | α′ | |||
30B-600 | 16.35 | 8.24 | 75.41 | 11.49 | 1.88 |
30B-700 | 14.11 | 9.31 | 76.58 | 13.06 | 1.94 |
30B-800 | 6.72 | 19.5 | 73.78 | 10.75 | 1.81 |
30B-900 | 6.31 | 4.03 | 89.66 | 11.42 | 1.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Gao, P.; Liu, J.; Zhao, Y.; Kang, T.; Zhao, Z. Effect of B Addition on Microstructure and Mechanical Properties of High-Strength 13Mn TRIP Steel with Different Annealing Temperatures. Crystals 2022, 12, 776. https://doi.org/10.3390/cryst12060776
Li F, Gao P, Liu J, Zhao Y, Kang T, Zhao Z. Effect of B Addition on Microstructure and Mechanical Properties of High-Strength 13Mn TRIP Steel with Different Annealing Temperatures. Crystals. 2022; 12(6):776. https://doi.org/10.3390/cryst12060776
Chicago/Turabian StyleLi, Feng, Pengfei Gao, Jie Liu, Yan Zhao, Tao Kang, and Zhengzhi Zhao. 2022. "Effect of B Addition on Microstructure and Mechanical Properties of High-Strength 13Mn TRIP Steel with Different Annealing Temperatures" Crystals 12, no. 6: 776. https://doi.org/10.3390/cryst12060776
APA StyleLi, F., Gao, P., Liu, J., Zhao, Y., Kang, T., & Zhao, Z. (2022). Effect of B Addition on Microstructure and Mechanical Properties of High-Strength 13Mn TRIP Steel with Different Annealing Temperatures. Crystals, 12(6), 776. https://doi.org/10.3390/cryst12060776