A New Thermal Model for Predicted Discharge Craters in Micro/Nano-EDM Considering the Non-Fourier Effect
Abstract
:1. Introduction
2. Derivation of the Non-Fourier Heat Conduction Law for Micro/Nano-EDM
3. Establishment of the Thermal Model for Micro/Nano-EDM Considering the Non-Fourier Effect
3.1. Configuration and Hypothesis of the Thermal Model
3.2. Establishment of the Thermal Model
3.2.1. Gauss Heat Source Model
3.2.2. Radius of the Discharge Channel
3.2.3. Proportion of the Discharge Energy Absorbed by the Workpiece
3.2.4. Latent Heat of Phase Change
3.2.5. Physical Parameters of the Workpiece Material
4. Calculation of the Thermal Model in Micro/Nano-EDM Considering the Non-Fourier Effect
5. Verification and Analysis of the Thermal Model for Micro/Nano-EDM Considering the Non-Fourier Effect
5.1. Experimental Configuration
5.2. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Zhang, G.; Han, F.; Zhang, Y.M.; Rong, Y.M. Determination of the optimal servo feed speed by thermal model during multi-pulse discharge process of WEDM. Int. J. Mech. Sci. 2018, 142–143, 359–369. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Q.; Zhu, G.; Liu, Q.Y.; Huang, Y.H.; Zhang, J.H. Research on the energy distribution of micro EDM by utilization of electro-thermal model. Int. J. Adv. Manuf. Technol. 2017, 93, 1–8. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ahmed, A.; Mia, M. Chapter 3—Trends in electrical discharge machining of Ti- and Ni-based superalloys: Macro-micro-compound arc/spark/melt process. Micro Electro-Fabr. Micro Nano Technol. 2021, 63–87. [Google Scholar]
- Nadda, R.; Nirala, C.K. Thermal modeling of single discharge in prospect of tool wear compensation in μEDM. Int. J. Adv. Manuf. Technol. 2020, 107, 4573–4595. [Google Scholar] [CrossRef]
- Asad, B.M.A.; Islam, M.T.; Masaki, T.; Wong, Y.S. Analysis of micro-EDM electric characteristics employing plasma property. CIRP J. Manuf. Sci. Technol. 2018, 20, 36–50. [Google Scholar] [CrossRef]
- Jahan, M.P.; Rajurkar, K.P.; Malshe, A.P.; Kunieda, M.; Okada, A.; Furutani, A. A Comparative Study on Machining Capabilities of Wet and Dry Nano-scale Electro-machining. Procedia CIRP 2016, 42, 155–160. [Google Scholar] [CrossRef]
- Shabgard, M.; Ahmadi, R.; Seyedzavvar, M.; Oliaei, S.N.B. Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int. J. Mach. Tools Manuf. 2013, 65, 79–87. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, G.; Li, J. Finite Element Analysis and Parameter Verification of Temperature Field in WEDM. China Mech. Eng. 2010, 21, 38–42. [Google Scholar]
- Singh, H. Experimental study of distribution of energy during EDM process for utilization in thermal models. Int. J. Heat Mass Transf. 2012, 55, 5053–5064. [Google Scholar] [CrossRef]
- Hargrove, S.K.; Ding, D. Determining cutting parameters in wire EDM based on workpiece surface temperature distribution. Int. J. Adv. Manuf. Technol. 2007, 34, 295–299. [Google Scholar] [CrossRef]
- Somashekhar, K.P.; Panda, S.; Mathew, J.; Ramachandran, N. Numerical simulation of micro-EDM model with multi-spark. Int. J. Adv. Manuf. Technol. 2015, 180, 2701–2715. [Google Scholar] [CrossRef]
- Mujumdar, S.S.; Curreli, D.; Kapoor, S.G.; Ruzic, D. Modeling of melt-pool formation and material removal in micro electro-discharge machining. J. Manuf. Sci. Eng. 2015, 137, 1–9. [Google Scholar] [CrossRef]
- Jithin, S.; Bhandarkar, U.V.; Joshi, S.S. Multi-spark model for predicting surface roughness of electrical discharge textured surfaces. Int. J. Adv. Manuf. Technol. 2020, 106, 3741–3758. [Google Scholar] [CrossRef]
- Burlayenko, V.N.; Altenbach, H.; Sadowski, T.; Dimitrova, S.D.; Bhaskar, A. Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl. Math. Model. 2017, 45, 422–438. [Google Scholar] [CrossRef]
- Tang, L.; Ji, Y.; Ren, L.; Zhai, K.G.; Huang, T.Q.; Fan, Q.M.; Zhang, J.J.; Liu, J. Thermo-electrical coupling simulation of powder mixed EDM SiC/Al functionally graded materials. Int. J. Adv. Manuf. Technol. 2019, 105, 2615–2628. [Google Scholar] [CrossRef]
- Razeghiyadaki, A.; Molardi, C.; Talamona, D.; Perveen, A. Modeling of material removal rate and surface roughness generated during electro-discharge machining. Machines 2019, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Tlili, A.; Ghanem, F.; Ben Salah, N. A contribution in EDM simulation field. Int. J. Adv. Manuf. Technol. 2015, 79, 921–935. [Google Scholar] [CrossRef]
- Almacinha, J.; Lopes, A.M.; Rosa, P.; Marafona, J.D. How hydrogen dielectric strength forces the work voltage in the electric discharge machining. Micromachines 2018, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Hoang, K.T.; Gopalan, S.K.; Yang, S.H. Study of energy distribution to electrodes in a micro-EDM process by utilizing the electro-thermal model of single discharges. J. Mech. Sci. Technol. 2015, 29, 349–356. [Google Scholar] [CrossRef]
- Shahri, H.R.F.; Mahdavinejad, R.; Ashjaee, M.; Abdullah, A. A comparative investigation on temperature distribution in electric discharge machining process through analytical, numerical and experimental methods. Int. J. Mach. Tools Manuf. 2017, 114, 35–53. [Google Scholar] [CrossRef]
- Kirsanov, Y.A.; Kirsanov, A.Y.; Yudakhin, A.E. Measurement of thermal relaxation and temperature damping time in a solid. High Temp. 2017, 55, 114–119. [Google Scholar] [CrossRef]
- Ordonez-Miranda, J.; Alvarado-Gil, J.J. Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model. Int. J. Therm. Sci. 2009, 48, 2053–2062. [Google Scholar] [CrossRef]
- Ming, W.; Zhang, G.; Li, H.; Guo, J.W.; Zhang, Z.; Huang, Y.; Chen, Z. A hybrid process model for EDM based on finite-element method and Gaussian process regression. Int. J. Adv. Manuf. Technol. 2014, 74, 1197–1211. [Google Scholar] [CrossRef]
- Joshi, S.N.; Pande, S.S. Development of an intelligent process model for EDM. Int. J. Adv. Manuf. Technol. 2009, 45, 300. [Google Scholar] [CrossRef]
- Kansal, H.K.; Singh, S.; Kumar, P. Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math. Comput. Model. 2008, 47, 1217–1237. [Google Scholar] [CrossRef]
- Pang, H.; Liu, Z.; Yang, C.; Tian, Z. Effect of Magnetic Field on Surface Burning in High-Efficiency HSWEDM. Electromach. Mould 2016, 3, 11–15. [Google Scholar]
- Tan, Z.; Guo, G. Thermal Properties of Engineering Alloys; Metallurgical Industry Press: Beijing, China, 1994. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, G.; Zhang, Z.; Zhang, Y.; Huang, Y. Effect of assisted transverse magnetic field on distortion behavior of thin-walled components in WEDM process. Chin. J. Aeronaut. 2022, 35, 291–307. [Google Scholar] [CrossRef]
Density | Tm | Tev | Lm | Lev | |
---|---|---|---|---|---|
Value | 7930 | 1693 | 3023 | 300 | 6340 |
Unit | kg/m3 | K | K | kJ/kg | kJ/kg |
Temperature (K) | Heat Transfer Coefficient (W/m/K) | Specific Heat (J/kg/K) |
---|---|---|
100 | 9.2 | 272 |
200 | 12.6 | 402 |
400 | 16.6 | 515 |
600 | 19.8 | 557 |
800 | 22.6 | 582 |
1000 | 25.4 | 611 |
1200 | 28 | 640 |
1500 | 31.7 | 682 |
No. | Ton | I | fc | Experimental Value [2] | Simulation Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Considering the Fourier Effect | Considering the Fourier Effect | |||||||||||||
Rc0 | Dc0 | Vc0 | Rc1 | Dc1 | Vc1 | e1 | Rc2 | Dc2 | Vc2 | e2 | ||||
(μs) | (A) | (%) | (μm) | (μm) | (μm3) | (μm) | (μm) | (μm3) | (%) | (μm) | (μm) | (μm3) | (%) | |
1 | 0.1 | 1.27 | 4 | 2.87 | 1.15 | 14.87 | 3.34 | 1.33 | 23.16 | 55.75 | 3.03 | 1.2 | 17.25 | 15.97 |
2 | 0.15 | 1.07 | 4.8 | 3.09 | 1.19 | 17.84 | 3.57 | 1.36 | 27.34 | 53.24 | 3.26 | 1.24 | 20.58 | 15.35 |
3 | 0.2 | 0.99 | 5.1 | 2.99 | 1.17 | 16.42 | 3.44 | 1.33 | 24.76 | 50.77 | 3.15 | 1.21 | 18.84 | 14.73 |
4 | 0.24 | 0.53 | 9.6 | 2.9 | 1.16 | 15.32 | 3.32 | 1.32 | 22.79 | 48.8 | 3.05 | 1.2 | 17.5 | 14.23 |
5 | 0.31 | 1.02 | 9 | 5.24 | 1.93 | 83.2 | 5.95 | 2.17 | 120.98 | 45.41 | 5.49 | 1.99 | 94.32 | 13.37 |
6 | 0.32 | 0.67 | 9.3 | 3.67 | 1.21 | 25.59 | 4.17 | 1.36 | 37.08 | 44.93 | 3.84 | 1.25 | 28.98 | 13.25 |
7 | 0.35 | 1.9 | 5.9 | 5.98 | 1.59 | 89.27 | 6.76 | 1.78 | 128.09 | 43.49 | 6.26 | 1.64 | 100.76 | 12.88 |
8 | 0.46 | 1.69 | 6.9 | 6.42 | 2.04 | 132.01 | 7.17 | 2.26 | 182.57 | 38.31 | 6.69 | 2.1 | 147.23 | 11.53 |
9 | 0.49 | 0.49 | 12.9 | 3.85 | 1.45 | 33.74 | 4.29 | 1.6 | 46.2 | 36.91 | 4.01 | 1.49 | 37.51 | 11.17 |
10 | 0.49 | 1.15 | 8.3 | 5.4 | 1.83 | 83.78 | 6 | 2.03 | 114.74 | 36.95 | 5.63 | 1.87 | 93.06 | 11.08 |
11 | 0.55 | 0.93 | 12.2 | 6.44 | 2.3 | 149.76 | 7.12 | 2.52 | 200.92 | 34.16 | 6.68 | 2.36 | 165.39 | 10.44 |
12 | 0.6 | 0.69 | 10 | 3.93 | 1.39 | 33.71 | 4.32 | 1.52 | 44.45 | 31.89 | 4.07 | 1.42 | 37.02 | 9.83 |
13 | 0.64 | 1.97 | 7.3 | 7.92 | 2.38 | 234.38 | 8.67 | 2.58 | 304.92 | 30.09 | 8.19 | 2.43 | 256.3 | 9.35 |
14 | 0.68 | 1.14 | 10.3 | 6.63 | 2.11 | 145.62 | 7.23 | 2.28 | 186.85 | 28.31 | 6.85 | 2.15 | 158.54 | 8.87 |
15 | 0.7 | 1.03 | 12 | 6.98 | 2.21 | 169.05 | 7.59 | 2.38 | 215.42 | 27.43 | 7.2 | 2.25 | 183.64 | 8.63 |
16 | 0.72 | 0.64 | 10.9 | 4.27 | 1.54 | 44.08 | 4.63 | 1.66 | 55.79 | 26.55 | 4.4 | 1.57 | 47.78 | 8.39 |
17 | 0.72 | 0.91 | 10.9 | 5.8 | 1.91 | 100.88 | 6.29 | 2.05 | 127.66 | 26.55 | 5.98 | 1.95 | 109.34 | 8.39 |
18 | 0.75 | 1.1 | 11.6 | 7.69 | 2.35 | 218.18 | 8.31 | 2.52 | 273.25 | 25.24 | 7.92 | 2.39 | 235.71 | 8.03 |
19 | 0.86 | 1.94 | 7.9 | 9.04 | 2.41 | 309.21 | 9.65 | 2.55 | 372.62 | 20.51 | 9.27 | 2.45 | 330.01 | 6.73 |
20 | 0.9 | 1.64 | 7.4 | 7.16 | 1.98 | 159.36 | 7.61 | 2.08 | 189.35 | 18.82 | 7.33 | 2.01 | 169.33 | 6.26 |
21 | 0.93 | 1 | 9.6 | 5.61 | 1.7 | 84 | 5.94 | 1.78 | 98.75 | 17.56 | 5.74 | 1.72 | 88.96 | 5.9 |
22 | 0.93 | 1.75 | 7.2 | 6.96 | 1.93 | 146.78 | 7.37 | 2.02 | 172.56 | 17.56 | 7.12 | 1.95 | 155.45 | 5.9 |
23 | 0.95 | 1.21 | 12.7 | 8.41 | 2.4 | 266.5 | 8.88 | 2.51 | 311.08 | 16.73 | 8.6 | 2.43 | 281.61 | 5.67 |
24 | 0.96 | 0.49 | 16 | 4.6 | 1.67 | 55.48 | 4.85 | 1.75 | 64.53 | 16.31 | 4.7 | 1.69 | 58.56 | 5.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, C.; Zhou, H.; Yan, H. A New Thermal Model for Predicted Discharge Craters in Micro/Nano-EDM Considering the Non-Fourier Effect. Crystals 2022, 12, 794. https://doi.org/10.3390/cryst12060794
Chen Z, Wu C, Zhou H, Yan H. A New Thermal Model for Predicted Discharge Craters in Micro/Nano-EDM Considering the Non-Fourier Effect. Crystals. 2022; 12(6):794. https://doi.org/10.3390/cryst12060794
Chicago/Turabian StyleChen, Zhi, Cheng Wu, Hongbing Zhou, and Hongzhi Yan. 2022. "A New Thermal Model for Predicted Discharge Craters in Micro/Nano-EDM Considering the Non-Fourier Effect" Crystals 12, no. 6: 794. https://doi.org/10.3390/cryst12060794
APA StyleChen, Z., Wu, C., Zhou, H., & Yan, H. (2022). A New Thermal Model for Predicted Discharge Craters in Micro/Nano-EDM Considering the Non-Fourier Effect. Crystals, 12(6), 794. https://doi.org/10.3390/cryst12060794