Effect of High Temperature Treatment on the Photoluminescence of InGaN Multiple Quantum Wells
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buckley, E. Laser wavelength choices for pico-projector applications. J. Disp. Technol. 2011, 7, 402–406. [Google Scholar] [CrossRef]
- Hardy, M.T.; Feezell, D.F.; DenBaars, S.P.; Nakamura, S. Group III-nitride lasers: A materials perspective. Mater. Today 2011, 14, 408–415. [Google Scholar] [CrossRef]
- Mishia, U.K.; Parikh, P.; Wu, Y.F. AlGaN/GaN HEMTs—An overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Zhao, D.; Liu, Z.; Chen, P.; Yang, J.; Duan, L.; Shi, Y.; Wang, H. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature. J. Semicond. 2021, 42, 112801. [Google Scholar] [CrossRef]
- Herzog, W.D.; Singh, R.; Moustakas, T.D.; Goldberg, B.B.; Ünlü, M. Photoluminescence microscopy of InGaN quantum wells. Appl. Phys. Lett. 1997, 70, 1333–1335. [Google Scholar] [CrossRef] [Green Version]
- Damilano, B.; Grandjean, N.; Massies, J. InGaN/GaN quantum wells grown by molecular beam epitaxy emitting at 300 K in the whole visible spectrum. Mater. Adv. Technol. 2001, 82, 224–226. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, X.; Xiong, H.; Li, Q.; Kang, J.; Fang, Z.; Lin, F.; Yang, B.; Lin, S.; Shen, W.; et al. Improved interface quality and luminescence capability of InGaN/GaN quantum wells with Mg pretreatment. Appl. Phys. A-Mater. Sci. Process. 2016, 122, 108. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, D.G. Barrier and well thickness designing of InGaN/GaN multiple quantum well for better performances of GaN based laser diode. Acta Phys. Sin. 2016, 65, 077802. [Google Scholar] [CrossRef]
- Farrell, R.M.; Young, E.C.; Wu, F.; DenBaars, S.P.; Speck, J.S. Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semicond. Sci. Technol. 2012, 27, 024001. [Google Scholar] [CrossRef]
- Massabuau, F.; Kappers, M.; Humphreys, C.; Oliver, R. Mechanisms preventing trench defect formation in InGaN/GaN quantum well structures using hydrogen during GaN barrier growth. Phys. Status Solidi B-Basic Solid State Phys. 2017, 254, 1600666. [Google Scholar] [CrossRef] [Green Version]
- Verzellesi, G.; Saguatti, D.; Meneghini, M.; Bertazzi, F.; Goano, M.; Meneghesso, G.; Zanoni, E. Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. J. Appl. Phys. 2013, 114, 071101. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Sun, Q.; Chen, J.; Wang, J.F.; Wang, Y.T.; Yang, H. Study on the thermal stability of InN by in-situ laser reflectance system. J. Cryst. Growth 2005, 281, 310–317. [Google Scholar] [CrossRef]
- Karpov, S.Y. Suppression of phase separation in InGaN due to elastic strain. MRS Internet J. Nitride Semicond. Res. 2014, 3, 16. [Google Scholar] [CrossRef]
- Liu, H.F.; Liu, W.; Yong, A.M.; Zhang, X.H.; Chua, S.J.; Chi, D.Z. Effects of annealing on structural and optical properties of InGaN/GaN multiple quantum wells at emission wavelength of 490 nm. J. Appl. Phys. 2011, 110, 063505. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M.S.M.; Iwasa, N.I.N. Thermal annealing effects on P-type Mg-doped GaN films. Jpn. J. Appl. Phys. 1992, 31, L139–L142. [Google Scholar] [CrossRef]
- Liang, F.; Yang, J.; Zhao, D.; Jiang, D.; Liu, Z.; Zhu, J.; Chen, P.; Liu, W.; Liu, S.; Xing, Y.; et al. Influence of hydrogen impurity on the resistivity of low temperature grown p-AlxGa1-xN layer (0.08 ≤ x ≤ 0.104). Superlattices Microstruct. 2018, 113, 720–725. [Google Scholar] [CrossRef]
- Tian, A.; Liu, J.; Zhang, L.; Li, Z.; Ikeda, M.; Zhang, S.; Li, D.; Wen, P.; Zhang, F.; Cheng, Y.; et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Opt. Express 2017, 25, 415–421. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Feng, M.; Zhou, K.; Zhang, S.; Wang, H.; Li, D.; Zhang, L.; Zhao, D.; Jiang, D.; et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth. Appl. Phys. Lett. 2013, 103, 152109. [Google Scholar] [CrossRef]
- Hoffmann, V.; Mogilatenko, A.; Zeimer, U.; Einfeldt, S.; Weyers, M.; Kneissl, M. In-situ observation of InGaN quantum well decomposition during growth of laser diodes. Cryst. Res. Technol. 2015, 50, 499–503. [Google Scholar] [CrossRef]
- Liu, J.; Liang, H.; Zheng, X.; Liu, Y.; Xia, X.; Abbas, Q.; Huang, H.; Shen, R.; Luo, Y.; Du, G. Degradation mechanism of crystalline quality and luminescence in In0.42Ga0.58N/GaN double heterostructures with porous InGaN layer. J. Phys. Chem. C 2017, 121, 18095–18101. [Google Scholar] [CrossRef]
- Smalc-Koziorowska, J.; Grzanka, E.; Lachowski, A.; Hrytsak, R.; Grabowski, M.; Grzanka, S.; Kret, S.; Czernecki, R.; Turski, H.; Marona, L.; et al. Role of metal vacancies in the mechanism of thermal degradation of InGaN quantum wells. ACS Appl. Mater. Interfaces 2021, 13, 7476–7484. [Google Scholar] [CrossRef]
- Moon, Y.T.; Kim, D.J.; Song, K.M.; Choi, C.J.; Han, S.H.; Seong, T.Y.; Park, S.J. Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells. J. Appl. Phys. 2001, 89, 6514–6518. [Google Scholar] [CrossRef]
- Chuo, C.C.; Lee, C.M.; Nee, T.E.; Chyi, J.I. Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells. Appl. Phys. Lett. 2000, 76, 3902–3904. [Google Scholar] [CrossRef]
- Hou, Y.; Liang, F.; Zhao, D.; Chen, P.; Yang, J.; Liu, Z. Role of hydrogen treatment during the material growth in improving the photoluminescence properties of InGaN/GaN multiple quantum wells. J. Alloys Compd. 2021, 874, 159851. [Google Scholar] [CrossRef]
- Liu, S.T.; Yang, J.; Zhao, D.G.; Jiang, D.S.; Liang, F.; Chen, P.; Zhu, J.J.; Liu, Z.S.; Liu, W.; Xing, Y.; et al. The influence of thermal annealing process after GaN cap layer growth on structural and optical properties of InGaN/InGaN multi-quantum wells. Opt. Mater. 2018, 86, 460–463. [Google Scholar] [CrossRef]
- Hou, Y.; Liang, F.; Zhao, D.; Liu, Z.; Chen, P.; Yang, J. Improvement of interface morphology and luminescence properties of InGaN/GaN multiple quantum wells by thermal annealing treatment. Results Phys. 2021, 31, 105057. [Google Scholar] [CrossRef]
- Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 1991, 30, L1705–L1707. [Google Scholar] [CrossRef]
- Ambacher, O.; Brandt, M.S.; Dimitrov, R.; Metzger, T.; Stutzmann, M. Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1996, 14, 3532. [Google Scholar] [CrossRef]
- El-Masry, N.A.; Piner, E.L.; Liu, S.X.; Bedair, S.M. Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 1998, 72, 40–42. [Google Scholar] [CrossRef]
- McCluskey, M.D.; Romano, L.T.; Krusor, B.S.; Bour, D.P.; Johnson, N.M.; Brennan, S. Phase separation in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 72, 1730–1732. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.J.; Xie, M.H.; Tong, S.Y. A model for steady-state luminescence of localized-state ensemble. Europhys. Lett. (EPL) 2005, 71, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Ilahi, B.; Nasr, O.; Paquette, B.; Alouane, M.H.H.; Chauvin, N.; Saleme, B.; Sfaxi, L.; Bru-Chevalier, C.; Morris, D.; Ares, R.; et al. Thermally activated inter-dots carriers’ transfer in InAs QDs with InGaAs underlying layer: Origin and dependence on the post-growth intermixing. J. Alloys Compd. 2016, 656, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liang, F.; Zhao, D.; Jiang, D.; Liu, Z.; Zhu, J.; Yang, J.; Wang, W. Effect of dual-temperature-grown InGaN/GaN multiple quantum wells on luminescence characteristics. J. Alloys Compd. 2019, 790, 197–202. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Xing, Y.; Yang, D.; Yu, J.; Hao, Z.; Sun, C.; Xiong, B.; Han, Y.; Wang, J.; et al. Consistency on Two Kinds of Localized Centers Examined from Temperature-Dependent and Time-Resolved Photoluminescence in InGaN/GaN Multiple Quantum Wells. ACS Photonics 2017, 4, 2078–2084. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Lin, E.-C.; Wu, C.-M.; Yang, C.C.; Yang, J.-R. Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions. Appl. Phys. Lett. 2004, 84, 2506–2508. [Google Scholar] [CrossRef]
- Grandjean, N.; Damilano, B.; Massies, J. Group-III nitride quantum heterostructures grown by molecular beam epitaxy. J. Phys. Condens. Matter 2001, 13, 6945–6960. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.J.; Cheng, W.C.; Xie, M.H.; Tong, S.Y.; Che, C.M.; Yang, H. Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys. Appl. Phys. Lett. 2001, 79, 1810–1812. [Google Scholar] [CrossRef] [Green Version]
Samples | Heat Treatment Temperature/Time | Well Layer Thickness (nm) | In Content of QW |
---|---|---|---|
NT | None | 2.69 | 11.28% |
LT | 880 °C/230 s + 880 °C/120 s | 2.02 | 11.90% |
HT | 1020 °C/230 s + 950 °C/120 s | 4.70 | 5.60% |
Samples | (eV) | (eV) | (meV) | |
---|---|---|---|---|
NT | 2.599 | 2.663 | 35 | 0.033 |
LT | 2.702 | 2.727 | 0.148 | 0.071 |
HT | 2.705 | 2.707 | 0.074 | 0.040 |
Samples | E (meV) | A |
---|---|---|
NT | 41.8 | 50.3 |
LT | 75.5 | 100.1 |
HT | 74.9 | 254.2 |
Samples | Rq (nm) | Ra (nm) |
---|---|---|
NT | 0.44 | 0.331 |
LT | 0.583 | 0.44 |
HT | 0.568 | 0.454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liang, F.; Zhao, D.; Ben, Y.; Yang, J.; Liu, Z.; Chen, P. Effect of High Temperature Treatment on the Photoluminescence of InGaN Multiple Quantum Wells. Crystals 2022, 12, 839. https://doi.org/10.3390/cryst12060839
Wang Y, Liang F, Zhao D, Ben Y, Yang J, Liu Z, Chen P. Effect of High Temperature Treatment on the Photoluminescence of InGaN Multiple Quantum Wells. Crystals. 2022; 12(6):839. https://doi.org/10.3390/cryst12060839
Chicago/Turabian StyleWang, Yachen, Feng Liang, Degang Zhao, Yuhao Ben, Jing Yang, Zongshun Liu, and Ping Chen. 2022. "Effect of High Temperature Treatment on the Photoluminescence of InGaN Multiple Quantum Wells" Crystals 12, no. 6: 839. https://doi.org/10.3390/cryst12060839
APA StyleWang, Y., Liang, F., Zhao, D., Ben, Y., Yang, J., Liu, Z., & Chen, P. (2022). Effect of High Temperature Treatment on the Photoluminescence of InGaN Multiple Quantum Wells. Crystals, 12(6), 839. https://doi.org/10.3390/cryst12060839