Experimental Studies on Mechanical Properties and Microscopic Mechanism of Marble Waste Powder Cement Cementitious Materials
Abstract
:1. Introduction
2. Experimental Section
2.1. Raw Materials
2.2. Mix Ratio Design
2.3. Test Design and Sample Preparation
2.4. Test Method
2.4.1. Mechanical Performance Test
2.4.2. Micro-Performance Test
3. Results and Discussions
3.1. Results of the Compressive Strength
3.2. Results of the Flexural Strength
3.3. Microstructural Morphology
3.4. XRD Analysis
4. Mechanism of Marble Waste Powder in Composite Gel Material
5. Relationship between Marble Waste Powder Dosage and Strength Based on Microstructure
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.; Meikle, S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 2016, 120, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Mashaly, A.O.; El-Kaliouby, B.A.; Shalaby, B.N.; El–Gohary, A.M.; Rashwan, M.A. Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. J. Clean. Prod. 2016, 112, 731–741. [Google Scholar] [CrossRef]
- Rana, A.; Kalla, P.; Csetenyi, L.J. Sustainable use of marble slurry in concrete. J. Clean. Prod. 2015, 94, 304–311. [Google Scholar] [CrossRef]
- Alyamaç, K.E.; Aydin, A.B. Concrete properties containing fine aggregate marble powder. KSCE J. Civ. Eng. 2015, 19, 2208–2216. [Google Scholar] [CrossRef]
- Hai, L.; Dewei, J.; Chenggang, C. Effect of fatty acid methyl ester polyoxyethylene ether on the rheological properties of cement filled with artificial marble waste powders. J. Clean. Prod. 2021, 328, 129053. [Google Scholar]
- Zhou, C.F. Study on the Treatment of Wastewater from Sulfur Chemicals by Using Waste Stone Powder and Utilization of Its by-Product. Master’s Thesis, South China University of Technology, Guangzhou, China, 2011. (In Chinese). [Google Scholar]
- El-Sayed, H.A.; Farag, A.B.; Kandeel, A.M.; Younes, A.A.; Yousef, M.M. Characteristics of the marble processing powder waste at Shaq El-Thoaban industrial area, Egypt, and its suitability for cement manufacture. HBRC J. 2018, 14, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Belaidi, A.S.E.; Azzouz, L.; Kadri, E.; Kenai, S. Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Constr. Build. Mater. 2012, 31, 251–257. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G.; Naik, T.R. Characterization of marble powder for its use in mortar and concrete. Constr. Build. Mater. 2010, 24, 113–117. [Google Scholar] [CrossRef]
- Natarajan, S.; Murugesan, P. Synergistic effect of marble powder and green sand on the mechanical properties of metakaolin-cement concrete. Materials 2019, 12, 476. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Guo, M.L.; He, Y.Q. Study on the effect of ground marble on the properties of cement gelled Material. Concrete. 2016, 1, 99–102. (In Chinese) [Google Scholar]
- Zhang, J.T. Study on the Influence of Marble Powder on Physical and Mechanical Properties of Cement-Based Materials. Ph.D. Dissertation, Guangxi University, Nanning, China, 2019. (In Chinese). [Google Scholar]
- Du, Y.; Yang, W.; Ge, Y.; Wang, S.; Liu, P. Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. J. Clean. Prod. 2021, 287, 125018. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, A.; Sánchez-Polo, M.; Rozalen, M. Waste marble dust: An interesting residue to produce cement. Constr. Build. Mater. 2019, 224, 99–108. [Google Scholar] [CrossRef]
- Valdez, P.; Barragán, B.; Girbes, I.; Shuttleworth, N.; Cockburn, A. Use of waste from the marble industry as filler for the production of self-compacting concretes. Mater. Constr. 2011, 61, 61–76. [Google Scholar]
- Bacarji, E.; Toledo Filho, R.D.; Koenders, E.A.B.; Figueiredo, E.P.; Lopes, J.L.M.P. Sustainability perspective of marble and granite residues as concrete fillers. Constr. Build. Mater. 2013, 45, 1–10. [Google Scholar] [CrossRef]
- Ergün, A. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr. Build. Mater. 2011, 25, 806–812. [Google Scholar] [CrossRef]
- Munir, M.J.; Kazmi, S.M.S.; Wu, Y.F. Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: A sustainable approach. Constr. Build. Mater. 2017, 154, 590–599. [Google Scholar] [CrossRef]
- Li, L.G.; Huang, Z.H.; Tan, Y.P.; Kwan, A.K.H.; Chen, H.Y. Recycling of marble dust as paste replacement for improving strength, microstructure and eco-friendliness of mortar. J. Clean. Prod. 2019, 210, 55–65. [Google Scholar] [CrossRef]
- Zhang, J.; Desuo, C.; Tongkuai, W.; Qin, H.; Kengming, L. Experimental analysis on the effects of artificial marble waste powder on concrete performance. Anna. Chim.-Sci. Mater. 2018, 42, 347–362. [Google Scholar] [CrossRef]
- Rodrigues, R.; De Brito, J.; Sardinha, M. Mechanical properties of structural concrete containing very Fine aggregates from marble cutting sludge. Constr. Build. Mater. 2015, 77, 349–356. [Google Scholar] [CrossRef]
- GB/T1346-2011; Standard Water Consumption, Setting Time and Stability Test Method for Cement. Standardization Administration of China: Beijing, China, 2011. (In Chinese)
- GB/T 17671-1999; Cement Sand Strength Test Method (ISO Method). Standardization Administration of China: Beijing, China, 1999. (In Chinese)
- Prošek, Z.; Nežerka, V.; Tesárek, P. Enhancing cementitious pastes with waste marble sludge. Constr. Build. Mater. 2020, 255, 119372. [Google Scholar] [CrossRef]
- Varadharajan, S.; Jaiswal, A.; Verma, S. Assessment of mechanical properties and environmental benefits of using rice husk ash and marble dust in concrete. Structures 2020, 28, 389–406. [Google Scholar] [CrossRef]
- Mo, Z.; Wang, R.; Gao, X. Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin. Constr. Build. Mater. 2020, 256, 119454. [Google Scholar] [CrossRef]
- Hu, L.; He, Z. A fresh perspective on effect of metakaolin and limestone powder on sulfate resistance of cement-based materials. Constr. Build. Mater. 2020, 262, 119847. [Google Scholar] [CrossRef]
- Adu-Amankwah, S.; Zajac, M.; Stabler, C.; Lothenbach, B.; Black, L. Influence of limestone on the hydration of ternary slag cements. Cem. Concr. Res. 2017, 100, 96–109. [Google Scholar] [CrossRef]
- Vardhan, K.; Goyal, S.; Siddique, R.; Singh, M. Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr. Build. Mater. 2015, 96, 615–621. [Google Scholar] [CrossRef]
- Bayiha, B.N.; Billong, N.; Yamb, E.; Kaze, R.C.; Nzengwa, R. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr. Build. Mater. 2019, 217, 28–35. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, M.; Auda, E.M. Re-use of waste marble dust in the production of cement and concrete. Constr. Build. Mater. 2014, 50, 28–41. [Google Scholar] [CrossRef]
- Ercikdi, B.; Külekci, G.; Yılmaz, T. Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Constr. Build. Mater. 2015, 93, 573–583. [Google Scholar] [CrossRef]
- Bentz, D.P.; Ardani, A.; Barrett, T.; Jones, S.Z.; Lootens, D.; Peltz, M.A.; Sato, T.; Stutzman, P.E.; Tanesi, J.; Weiss, W.J. Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. 2015, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J. The Study on Characteristics of Cement-Ground Limestone Gelation System. Ph.D. Dissertation, Central South University, Changsha, China, 2008. (In Chinese). [Google Scholar]
- Li, D.; Jin, L.; Du, X.L. Concrete mode-I mesoscale fracture model and its application in analysis of size effect at material level. Chin. Civ. Eng. J. 2020, 53, 48–61. (In Chinese) [Google Scholar]
- Huang, K.Z. Damage and Fracture Mechanism of Materials and Macro-Micro Mechanical Theory; Tsinghua University Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Fares, G.; Albaroud, M.H.; Khan, M.I. Fine limestone dust from ornamental stone factories: A potential filler for a high-performance cementitious matrix. Constr. Build. Mater. 2019, 224, 428–438. [Google Scholar] [CrossRef]
- Liu, M.H.; Wang, X.Y.; Liu, X.; Jia, S.Y. Study on modification effect of calcium sulfate whiskers on stone powder content of manufactured sand concrete. Chin. Civ. Eng. J. 2021, 54, 56–64. (In Chinese) [Google Scholar]
Sample | Volume Average Size (μm) | Average Surface Area Particle Size (μm) | Average Grain Diameter (μm) | |||
---|---|---|---|---|---|---|
D10 | D50 | D90 | D97 | |||
P | 18.28 | 2.86 | 0.93 | 11.13 | 33.86 | 46.18 |
M1 | 1.91 | 1.40 | 0.81 | 1.79 | 3.19 | 3.98 |
M2 | 7.28 | 3.00 | 1.48 | 5.88 | 15.04 | 21.37 |
M3 | 16.87 | 4.18 | 1.36 | 13.28 | 37.55 | 52.63 |
Sample | SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | MgO | SO3 | K2O | Na2O | LOI |
---|---|---|---|---|---|---|---|---|---|---|
P | 21.80 | 4.60 | 2.40 | 0.10 | 64.47 | 1.40 | 1.99 | 0.60 | 0.30 | 2.34 |
M | 0.03 | 0.01 | 0.01 | 0.13 | 47.24 | 8.85 | 0.00 | 0.01 | 0.20 | 43.52 |
Sample | Marble Waste Powder (%) | Marble Waste Powder (g) | Cement (g) | Standard Sand (g) | Water (g) | |
---|---|---|---|---|---|---|
1 | P | 0 | 0 | 500 | - | 250 |
2 | PM1 | 20 | 100 | 400 | - | 250 |
3 | PM2 | 20 | 100 | 400 | - | 250 |
4 | PM3 | 20 | 100 | 400 | - | 250 |
5 | PJ | 0 | 0 | 450 | 1350 | 225 |
6 | P + M1 | 5 | 22.5 | 427.5 | 1350 | 225 |
7 | 10 | 45 | 405 | 1350 | 225 | |
8 | 15 | 67.5 | 382.5 | 1350 | 225 | |
9 | 20 | 90 | 360 | 1350 | 225 | |
10 | 25 | 112.5 | 337.5 | 1350 | 225 | |
11 | P + M2 | 5 | 22.5 | 427.5 | 1350 | 225 |
12 | 10 | 45 | 405 | 1350 | 225 | |
13 | 15 | 67.5 | 382.5 | 1350 | 225 | |
14 | 20 | 90 | 360 | 1350 | 225 | |
15 | 25 | 112.5 | 337.5 | 1350 | 225 | |
16 | P + M3 | 5 | 22.5 | 427.5 | 1350 | 225 |
17 | 10 | 45 | 405 | 1350 | 225 | |
18 | 15 | 67.5 | 382.5 | 1350 | 225 | |
19 | 20 | 90 | 360 | 1350 | 225 | |
20 | 25 | 112.5 | 337.5 | 1350 | 225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Yang, W.; Zhang, J. Experimental Studies on Mechanical Properties and Microscopic Mechanism of Marble Waste Powder Cement Cementitious Materials. Crystals 2022, 12, 868. https://doi.org/10.3390/cryst12060868
Wang T, Yang W, Zhang J. Experimental Studies on Mechanical Properties and Microscopic Mechanism of Marble Waste Powder Cement Cementitious Materials. Crystals. 2022; 12(6):868. https://doi.org/10.3390/cryst12060868
Chicago/Turabian StyleWang, Tongkuai, Wenwei Yang, and Jintuan Zhang. 2022. "Experimental Studies on Mechanical Properties and Microscopic Mechanism of Marble Waste Powder Cement Cementitious Materials" Crystals 12, no. 6: 868. https://doi.org/10.3390/cryst12060868
APA StyleWang, T., Yang, W., & Zhang, J. (2022). Experimental Studies on Mechanical Properties and Microscopic Mechanism of Marble Waste Powder Cement Cementitious Materials. Crystals, 12(6), 868. https://doi.org/10.3390/cryst12060868