Nucleation and Growth of an Ensemble of Crystals during the Intermediate Stage of a Phase Transition in Metastable Liquids
Abstract
:1. Introduction
2. The Model of Nucleation and Crystal Growth
3. Kinetics of Supercooling (Supersaturation) Removal
4. The Model with Fluctuations in Crystal Growth Rates
5. Conclusions
- (i)
- A complete analytic solution of the integro-differential model that describes the intermediate phase transition in one-component melts and solutions without taking into account fluctuations in the crystal growth rate has been found. Within the framework of this model, an exact analytical solution of the kinetic equation is obtained, and the density of the crystal size distribution function is found. An integro-differential equation for the metastability degree has been derived. A complete analytical solution to this equation is constructed based on the saddle-point method for calculating the Laplace-type integral.
- (ii)
- Our studies show that the found second approximation of the asymptotic solution is sufficient for quantitative analysis of the solution to the problem. In other words, our study demonstrates the sign-variable convergence of solutions to the second approximation, which indicates the fundamental importance of taking into account the first and second corrections in the asymptotic solution of the problem. The convergence of the found solution is ensured by a large value of the dimensionless Gibbs number p and/or by the smallness of the parameter , which is typical for a wide class of real systems. An explicit form of the first four coefficients of the found asymptotic solutions for the Weber-Volmer-Frenkel-Zel’dovich and Meiers nucleation kinetics is derived.
- (iii)
- Within the framework of the obtained solution, it is shown that the metastability degree and density of the distribution function have inflection points (observed experimentally) responsible for different stages of the phase transition process. At the initial times, when supercooling/supersaturation is large, the appearance of nuclei is the dominant process; then this process is followed by the growth of crystallites, which becomes dominant at the final stages of the intermediate phase transition when the metastability of the system is sufficiently small and nucleation proceeds unintensively.
- (iv)
- An exact analytical solution has been found for an integro-differential model describing the intermediate stage of the phase transition in one-component melts and solutions taking fluctuations in the crystal growth rate into account. Namely, the density of the crystal size distribution function has been determined and an implicit expression for metastability degree of the system in the case of different nucleation kinetics has been driven. The parametric solution to the problem constructed in this work is detailed for the frequently encountered Weber-Volmer-Frenkel-Zel’dovich and Meirs nucleation kinetics.
- (v)
- It is shown that the exact analytical solution to the integro-differential model with allowance for the “diffusion” term in the Fokker-Planck equation passes into a complete solution of the “non-diffusion” model (when the “diffusion” term in the kinetic equation is small enough). The analytical solutions, describing the evolution of the phase transformation at the intermediate stage, can be used as initial conditions at the final stage of the phase transition (e.g., at the stage of Ostwald ripening or coagulation of crystals).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madras, G.M.; McCoy, B.J. Transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci. 2002, 57, 3809–3818. [Google Scholar] [CrossRef]
- Zhang, T.H.; Liu, X.Y. Nucleation: What happens at the initial stage. Angew. Chem. Int. Ed. 2009, 48, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Uwaha, M.; Koyama, K. Transition from nucleation to ripening in the classical nucleation model. J. Cryst. Growth 2010, 312, 1046–1054. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V. On the theory of phase transformation process in a binary supercooled melt. Eur. Phys. J. Spec. Top. 2020, 229, 375–382. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Alexandrova, I.V. On the theory of the unsteady-state growth of spherical crystals in metastable liquids. Phil. Trans. R. Soc. A 2019, 377, 20180209. [Google Scholar] [CrossRef] [Green Version]
- Chernov, A.A. Modern Crystallography III; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Alexandrova, I.V.; Alexandrov, D.V. Dynamics of particulate assemblages in metastable liquids: A test of theory with nucleation and growth kinetics. Phil. Trans. R. Soc. A 2020, 378, 20190245. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, B. Physical Metallurgy; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Todes, O.M.; Seballo, V.A.; Gol’tsiker, L.D. Bath Crystallization from Solutions; Khimia: Leningrad, Russia, 1984. [Google Scholar]
- Poon, J.M.-H.; Immanuel, C.D.; Doyle, F.J., III; Litser, J.D. A threedimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena. Chem. Eng. Sci. 2008, 63, 1315–1329. [Google Scholar] [CrossRef]
- Poon, J.M.-H.; Ramachandran, R.; Sanders, C.F.W.; Glaser, T.; Immanuel, C.D.; Doyle, F.J., III; Litser, J.D.; Stepanek, F.; Wang, F.Y.; Cameron, I.T. Experimental validation studies on a multi-scale and multi-dimensional population balance model of batch granulation. Chem. Eng. Sci. 2009, 64, 775–786. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Dubovoi, G.Y.; Malygin, A.P.; Nizovtseva, I.G.; Toropova, L.V. Solidification of ternary systems with a nonlinear phase diagram. Russ. Metall. 2017, 2017, 127–135. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V.; Ivanov, A.A. Mathematical modeling of crystallization process from a supercooled binary melt. Math. Meth. Appl. Sci. 2021, 44, 12244–12251. [Google Scholar] [CrossRef]
- Thompson, C.V.; Spaepen, F. Homogeneous crystal nucleation in binary metallic melts. Acta Metall. 1983, 31, 2021–2027. [Google Scholar] [CrossRef]
- Kelton, K.F.; Greer, A.L. Nucleation in Condensed Matter: Applications in Materials and Biology; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Zettlemoyer, A.C. Nucleation; Dekker: New York, NY, USA, 1969. [Google Scholar]
- Alexandrov, D.V.; Nizovtseva, I.G.; Alexandrova, I.V. On the theory of nucleation and nonstationary evolution of a polydisperse ensemble of crystals. Int. J. Heat Mass Trans. 2019, 128, 46–53. [Google Scholar] [CrossRef]
- Alexandrov, D.V. Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation. J. Phys. Condens. Matter 2016, 28, 035102. [Google Scholar] [CrossRef] [PubMed]
- Volmer, M. Kinetik der Phasenbildung; Steinkopf: Dresden, Germany, 1939. [Google Scholar]
- Frenkel, J. Kinetic Theory of Liquids; Dover: New York, NY, USA, 1955. [Google Scholar]
- Velmurugan, J.; Noel, J.-M.; Nogala, W.; Mirkin, M.V. Nucleation and growth of metal on nanoelectrodes. Chem. Sci. 2012, 3, 3307–3314. [Google Scholar] [CrossRef]
- Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50. [Google Scholar] [CrossRef]
- Tokuyama, M.; Kawasaki, M.; Enomoto, V. Kinetic equations for Ostwald ripening. Physics A 1986, 134, 323–338. [Google Scholar] [CrossRef]
- Akaiwa, N.; Meiron, D.I. Numerical simulation of two-dimensional latestage coarsening for nucleation and growth. Phys. Rev. E 1995, 51, 5408–5421. [Google Scholar] [CrossRef] [Green Version]
- Farjoun, Y.; Neu, J.C. Aggregation according to classical kinetics: From nucleation to coarsening. Phys. Rev. E 2011, 83, 051607. [Google Scholar] [CrossRef] [Green Version]
- Alexandrova, I.V.; Alexandrov, D.V.; Makoveeva, E.V. Ostwald ripening in the presence of simultaneous occurrence of various mass transfer mechanisms: An extension of the Lifshitz-Slyozov theory. Phil. Trans. R. Soc. A 2021, 379, 20200308. [Google Scholar] [CrossRef]
- Alexandrov, D.V. On the theory of Ostwald ripening: Formation of the universal distribution. J. Phys. A Math. Theor. 2015, 48, 035103. [Google Scholar] [CrossRef]
- Alexandrov, D.V. Relaxation dynamics of the phase transformation process at its ripening stage. J. Phys. A Math. Theor. 2015, 48, 245101. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1991, 9, 177–184. [Google Scholar] [CrossRef]
- Aastuen, D.J.W.; Clark, N.A.; Swindal, J.C.; Muzny, C.D. Determination of the colloidal crystal nucleation rate density. Phase Trans. 1990, 21, 139–155. [Google Scholar] [CrossRef]
- Binder, K.; Stauffer, D. Statistical theory of nucleation, condensation and coagulation. Adv. Phys. 1976, 25, 343–396. [Google Scholar] [CrossRef]
- Langer, J.S.; Schwartz, A.J. Kinetics of nucleation in near-critical Fluids. Phys. Rev. A 1980, 21, 948–958. [Google Scholar] [CrossRef]
- Shneidman, V.A. Transient nucleation with a monotonically changing barrier. Phys. Rev. E 2010, 82, 031603. [Google Scholar] [CrossRef] [Green Version]
- Shneidman, V.A. Time-dependent distributions in self-quenching nucleation. Phys. Rev. E 2011, 84, 031602. [Google Scholar] [CrossRef] [Green Version]
- Buyevich, Y.A.; Mansurov, V.V. Kinetics of the intermediate stage of phase transition in batch crystallizatione. J. Cryst. Growth 1990, 104, 861–867. [Google Scholar] [CrossRef]
- Buyevich, Y.A.; Ivanov, A.O. Kinetics of phase separation in colloids II. Non-linear evolution of a metastable colloid. Physics A 1993, 193, 221–240. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Zubarev, A.Y. Non-linear evolution of a system of elongated droplike aggregates in a metastable magnetic Fluid. Physics A 1998, 251, 348–367. [Google Scholar] [CrossRef]
- Barlow, D.A. Theory of the intermediate stage of crystal growth with applications to protein crystallization. J. Cryst. Growth 2009, 311, 2480–2483. [Google Scholar] [CrossRef]
- Barlow, D.A.; Baird, J.K.; Su, C.-H. Theory of the von Weimarn rules governing the average size of crystals precipitated from a supersaturated solution. J. Cryst. Growth 2004, 264, 417–423. [Google Scholar] [CrossRef]
- Volmer, M.; Weber, A. Nukleation in übersättigten Strukturen. Z. Phys. Chem. 1926, 119, 277–301. [Google Scholar] [CrossRef]
- Zel’dovich, J.B. On the theory of formation of new phases: Cavitation. J. Exp. Theor. Phys. 1942, 12, 525–538. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Physical Kinetic; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Mullin, J.W. Crystallization; Butterworths: London, UK, 1972. [Google Scholar]
- Gherras, N.; Fevotte, G. Comparison between approaches for the experimental determination of metastable zone width: A case study of the batch cooling crystallization of ammonium oxalate in water. J. Cryst. Growth 2012, 342, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Kidyarov, B.I. Kinetics of Crystal Formation from the Liquid Phase; Nauka Publishing House: Novosibirsk, Russia, 1979. [Google Scholar]
- Alexandrov, D.V.; Alexandrova, I.V.; Ivanov, A.A.; Malygin, A.P.; Starodumov, I.O.; Toropova, L.V. On the Theory of the Nonstationary Spherical Crystal Growth in Supercooled Melts and Supersaturated Solutions. Russ. Metall. 2019, 2019, 787–794. [Google Scholar] [CrossRef]
- Nyvlt, J.; Sohnel, O.; Matuchova, M.; Broul, M. The Kinetics of Industrial Crystallization; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Randolph, A.; Larson, M. Theory of Particulate Processes; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Fedoruk, M.V. Saddle-Point Method; Nauka: Moscow, Russia, 1977. [Google Scholar]
- Alexandrov, D.V. Nonlinear dynamics of polydisperse assemblages of particles evolving in metastable media. Eur. Phys. J. Spec. Top. 2020, 229, 383–404. [Google Scholar] [CrossRef]
- Skripov, V.P. Methastable Liquids; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metalls and Alloys; Van Nostrand Reinhold: New York, NY, USA, 1981. [Google Scholar]
- Hamza, M.A.; Berge, B.; Mikosch, W.; Ruhl, E. Homogeneous nucleation of supersaturated KCl-solutions from single levitated microdroplets. Phys. Chem. Chem. Phys. 2004, 6, 3484–3489. [Google Scholar] [CrossRef]
- Janse, A.H. Nucleation and Crystal Growth in Batch Crystallizers; Delft University of Technology: Delft, The Netherlands, 1977. [Google Scholar]
- Pot, A. Industrial Sucrose Crystallization; Delft University of Technology: Delft, The Netherlands, 1980. [Google Scholar]
- Leubner, I.H. Balanced nucleation and growth model for controlled crystal size distribution. J. Disp. Sci. Technol. 2002, 23, 577–590. [Google Scholar] [CrossRef]
- Hanhoun, M.; Montastruc, L.; Azzaro-Pantel, C.; Biscans, B.; Freche, M.; Pibouleau, L. Simultaneous determination of nucleation and crystal growth kinetics of struvite using a thermodynamic modeling approach. Chem. Eng. J. 2013, 215–216, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Zumstein, R.C.; Rousseau, R.W. Growth rate dispersion by initial growth rate distributions and growth rate fluctuations. AIChE J. 1987, 33, 121–129. [Google Scholar] [CrossRef]
- Buyevich, Y.A.; Alexandrov, D.V.; Mansurov, V.V. Macrokinetics of Crystallization; Begell House: New York, NY, USA, 2001. [Google Scholar]
- Toropova, L.V.; Aseev, D.L.; Osipov, S.I.; Ivanov, A.A. Mathematical modeling of bulk and directional crystallization with the moving phase transition layer. Math. Meth. Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Toropova, L.V.; Alexandrov, D.V.; Rettenmayr, M.; Liu, D. Microstructure and morphology of Si crystals grown in pure Si and Al-Si melts. J. Phys. Condens. Matter 2022, 34, 094002. [Google Scholar] [CrossRef] [PubMed]
- Melikhov, I.V.; Beloussova, T.Y.; Uludev, N.A.; Blyudev, N.T. Fluctuain the rate of growth of monocrystals. Crystallography 1974, 19, 1263–1268. [Google Scholar]
- Shneidman, V. Early stages of Ostwald ripening. Phys. Rev. E 2013, 88, 010401. [Google Scholar] [CrossRef] [Green Version]
- Caraballo, K.G.; Baird, J.K.; Ng, J.D. Comparison of the crystallization kinetics of canavalin and lysozyme. Cryst. Growth Des. 2006, 6, 874–888. [Google Scholar] [CrossRef]
- Friedlander, S.K. Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Herlach, D.M. Phase Transformations in Multicomponent Melts; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Slezov, V.V. Kinetics of First-Order Phase Transitions; Wiley: Weinheim, Germany, 2009. [Google Scholar]
- Alexandrov, D.V. On the theory of fragmentation process with initial particle volume. Commun. Theor. Phys. 2017, 68, 269–271. [Google Scholar] [CrossRef]
- Makoveeva, E.V.; Alexandrov, D.V. Effects of external heat/mass sources and withdrawal rates of crystals from a metastable liquid on the evolution of particulate assemblages. Eur. Phys. J. Spec. Top. 2019, 228, 25–34. [Google Scholar] [CrossRef]
- Huppert, H.E.; Worster, M.G. Dynamic solidification of a binary melt. Nature 1985, 314, 703–707. [Google Scholar] [CrossRef]
- Kerr, R.C.; Woods, A.W.; Worster, M.G.; Huppert, H.E. Solidification of an alloy cooled from above Part 1. Equilibrium growth. J. Fluid Mech. 1990, 216, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Peppin, S.S.L.; Aussillous, P.; Huppert, H.E.; Worster, M.G. Steady-state mushy layers: Experiments and theory. J. Fluid Mech. 2007, 570, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Peppin, S.S.L.; Huppert, H.E.; Worster, M.G. Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech. 2008, 599, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Toropova, L.V.; Galenko, P.K.; Alexandrov, D.V.; Rettenmayr, M.; Kao, A.; Demange, G. Non-axisymmetric growth of dendrite with arbitrary symmetry in two and three dimensions: Sharp interface model vs. phase-field model. Eur. Phys. J. Spec. Top. 2020, 229, 2899–2909. [Google Scholar] [CrossRef]
- Toropova, L.V. Shape functions for dendrite tips of SCN and Si. Eur. Phys. J. Spec. Top. 2022, 231, 1129–1133. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Malygin, A.P. Analytical description of seawater crystallization in ice fissures and their influence on heat exchange between the ocean and the atmosphere. Dokl. Earth Sci. 2006, 411, 1407–1411. [Google Scholar] [CrossRef]
- Toropova, L.V.; Alexandrov, D.V. Dynamical law of the phase interface motion in the presence of crystals nucleation. Sci. Rep. 2022. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Bashkirtseva, I.A.; Ryashko, L.B. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations. Phil. Trans. R. Soc. A 2018, 376, 20170216. [Google Scholar] [CrossRef] [Green Version]
- Nizovtseva, I.G.; Alexandrov, D.V. The effect of density changes on crystallization with a mushy layer. Phil. Trans. R. Soc. A 2020, 378, 20190248. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toropova, L.V.; Makoveeva, E.V.; Osipov, S.I.; Malygin, A.P.; Yang, Y.; Alexandrov, D.V. Nucleation and Growth of an Ensemble of Crystals during the Intermediate Stage of a Phase Transition in Metastable Liquids. Crystals 2022, 12, 895. https://doi.org/10.3390/cryst12070895
Toropova LV, Makoveeva EV, Osipov SI, Malygin AP, Yang Y, Alexandrov DV. Nucleation and Growth of an Ensemble of Crystals during the Intermediate Stage of a Phase Transition in Metastable Liquids. Crystals. 2022; 12(7):895. https://doi.org/10.3390/cryst12070895
Chicago/Turabian StyleToropova, Liubov V., Eugenya V. Makoveeva, Sergei I. Osipov, Alexey P. Malygin, Yang Yang, and Dmitri V. Alexandrov. 2022. "Nucleation and Growth of an Ensemble of Crystals during the Intermediate Stage of a Phase Transition in Metastable Liquids" Crystals 12, no. 7: 895. https://doi.org/10.3390/cryst12070895
APA StyleToropova, L. V., Makoveeva, E. V., Osipov, S. I., Malygin, A. P., Yang, Y., & Alexandrov, D. V. (2022). Nucleation and Growth of an Ensemble of Crystals during the Intermediate Stage of a Phase Transition in Metastable Liquids. Crystals, 12(7), 895. https://doi.org/10.3390/cryst12070895