Manufacturing Techniques for Mg-Based Metal Matrix Composite with Different Reinforcements
Abstract
:1. Introduction
2. Challenges in Processing
3. Mg MMCs Development Processes
3.1. Solid-State Processing
Friction Stir Processing (FSP)
3.2. Liquid-State Processing
Stir Casting
3.3. Powder Metallurgy Processing
4. Process of PM for Mg MMCs
4.1. Blending/Mixing
4.2. Compacting
4.3. Sintering
4.3.1. Hot-Press Sintering
4.3.2. Microwave Sintering
4.3.3. Sparking Plasma Sintering (SPS)
4.4. Secondary Operation
5. Effect of Reinforcing Elements in Magnesium Matrix Composites
5.1. Carbon Nanotubes (CNTs)
5.2. Graphene
5.3. Graphene Nanoplatelets (GNPs)
5.4. Alumina (Al2O3)
5.5. Silicon Carbide (SiC)
5.6. Boron Carbide (B4C)
6. Conclusions
- When compared to alternative production processes such as stir casting, friction stir processing, and so on, a thorough literature review revealed that the powder metallurgy approach is the most straightforward way to synthesize metal matrix composites with hard and soft reinforcements. When composites are produced via the powder metallurgy technique, proper bonding between the matrix material and reinforcements occurs. The study found that composites made with powder metallurgy had better mechanical and tribological characteristics than those made with other methods.
- The addition of carbon nanotubes to the magnesium and magnesium alloy matrix enhanced the composites’ wettability and bonding strength. Al2O3-reinforced magnesium matrix composites outperform CNT-reinforced magnesium matrix composites in terms of wear resistance. When compared to Al2O3-reinforced magnesium MMCs, SiC-particle-reinforced magnesium MMCs exhibit better wear and creep resistance. Boron Carbide (B4C) has been shown to improve the interfacial bonding strength and flexural strength of hybrid composites when added to the magnesium matrix. The tensile strength of a magnesium matrix composite is enhanced by adding fibres, but the ductility is decreased.
- Magnesium MMCs’ creep behaviour is governed by the matrix’s creep, which is primarily responsible for regulating dislocation viscous slip and, to a lesser extent, grain boundary slippage.
- Scholars and scientists working in the domain of magnesium metal matrix composites using the powder metallurgy technique will benefit from this article.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Dai, X.; Zhao, L.; Li, B.; Wang, H.; Liang, C.; Fan, J. Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process. J. Alloys Compd. 2019, 785, 146–155. [Google Scholar] [CrossRef]
- Han, G.; Wang, Z.; Liu, K.; Li, S.; Du, X.; Du, W. Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs. Mater. Sci. Eng. A 2015, 628, 350–357. [Google Scholar] [CrossRef]
- Ali, Y.; Qiu, D.; Jiang, B.; Pan, F.; Zhang, M.-X. Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloys Compd. 2014, 619, 639–651. [Google Scholar] [CrossRef]
- Wang, L.; Mostaed, E.; Cao, X.; Huang, G.; Fabrizi, A.; Bonollo, F.; Chi, C.; Vedani, M. Effects of texture and grain size on mechanical properties of AZ80 magnesium alloys at lower temperatures. Mater. Des. 2016, 89, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Liao, W.; Guo, W.; Li, W.; Jiang, H.; Ding, W. Microstructure and mechanical properties of the carbon nanotubes reinforced AZ91D magnesium matrix composites processed by cyclic extrusion and compression. Mater. Sci. Eng. A 2017, 689, 427–434. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Asif, M.; Ullah, A. Improved mechanical properties of magnesium–graphene composites with copper–graphene hybrids. Mater. Sci. Technol. 2014, 31, 1452–1461. [Google Scholar] [CrossRef]
- Garcés, G.; Rodríguez, M.; Pérez, P.; Adeva, P. Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Mater. Sci. Eng. A 2006, 419, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.; Gupta, M. Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J. Alloys Compd. 2008, 459, 244–250. [Google Scholar] [CrossRef]
- Huard, G.; Angers, R.; Krishnadev, M.R.; Tremblay, R.; Dube, D. SiCp/Mg Composites Made by Low-Energy Mechanical Processing. Can. Metall. Q. 2013, 38, 193–200. [Google Scholar] [CrossRef]
- Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. Compressibility of porous magnesium foam: Dependency on porosity and pore size. Mater. Lett. 2004, 58, 357–360. [Google Scholar] [CrossRef]
- Zhou, S.-S.; Deng, K.-K.; Li, J.-C.; Shang, S.-J.; Liang, W.; Fan, J.-F. Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite. Mater. Des. 2014, 63, 672–677. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Yu, M.-F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nai, M.H.; Wei, J.; Gupta, M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater. Des. 2014, 60, 490–495. [Google Scholar] [CrossRef]
- Habibi, M.K.; Paramsothy, M.; Hamouda, A.M.S.; Gupta, M. Enhanced compressive response of hybrid Mg–CNT nano-composites. J. Mater. Sci. 2011, 46, 4588–4597. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Liu, W.; Shi, H.; Ding, C.; Hu, X.; Zheng, M.; Wu, K. Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite. Mater. Des. 2014, 58, 204–208. [Google Scholar] [CrossRef]
- Zou, N.; Li, Q. Compressive mechanical property of porous magnesium composites reinforced by carbon nanotubes. J. Mater. Sci. 2016, 51, 5232–5239. [Google Scholar] [CrossRef]
- Carreño-Morelli, E.; Yang, J.; Couteau, E.; Hernadi, K.; Seo, J.W.; Bonjour, C.; Schaller, R. Carbon nanotube/magnesium composites. Phys. Status Solidi (A) 2004, 201, R53–R55. [Google Scholar] [CrossRef]
- Sabetghadam-Isfahani, A.; Abbasi, M.; Sharifi, S.; Fattahi, M.; Amirkhanlou, S. Microstructure and mechanical properties of carbon nanotubes/AZ31 magnesium composite gas tungsten arc welding filler rods fabricated by powder metallurgy. Diam. Relat. Mater. 2016, 69, 160–165. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Liu, W.; Wu, K.; Shi, H.; Ding, C.; Hu, X.; Zheng, M. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Mater. Sci. Eng. A 2014, 597, 264–269. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, H.; Ji, H.; Zhang, Y. Effect of CNT contents on the microstructure and properties of CNT/TiMg composites. Materials. 2019, 12, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Sharif, S.; Razzaghi, M.; Ramakrishna, S.; Berto, F. Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review. Materials 2020, 13, 4421. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Singh, S.; Basak, A.; Krolczyk, G.; Pramanik, A.; Lamberti, L.; Pruncu, C.I. Processing of Ti50Nb50−xHAx composites by rapid microwave sintering technique for biomedical applications. J. Mater. Res. Technol. 2019, 9, 242–252. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Pramanik, A.; Basak, A.; Królczyk, G.; Bogdan-Chudy, M.; Wu, Y.L.; Zheng, H.Y. Experi-mental investigation into nano-finishing of β-TNTZ alloy using magnetorheological fluid magnetic abrasive finishing process for orthopedic applications. J. Mater. Res. Technol. 2021, 11, 600–617. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, C. Effect of cryogenic treatment on the microstructure, mechanical properties and finishability of β-TNTZ alloy for orthopedic applications. Mater. Lett. 2020, 278, 128461. [Google Scholar] [CrossRef]
- Singh, H.; Prakash, C.; Singh, S. Plasma spray deposition of HA-TiO2 on β-phase Ti-35Nb-7Ta-5Zr alloy for hip stem: Characterization of bio-mechanical properties, wettability, and wear resistance. J. Bionic Eng. 2020, 17, 1029–1044. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Ramakrishna, S.; Królczyk, G.; Le, C.H. Microwave sintering of porous Ti–Nb-HA compo-site with high strength and enhanced bioactivity for implant applications. J. Alloys Compd. 2020, 824, 153774. [Google Scholar] [CrossRef]
- Pradhan, S.; Singh, S.; Prakash, C.; Królczyk, G.; Pramanik, A.; Pruncu, C.I. Investigation of machining characteris-tics of hard-to-machine Ti-6Al-4V-ELI alloy for biomedical applications. J. Mater. Res. Technol. 2019, 8, 4849–4862. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Ramakrishna, S. Characterization of indigenously coated biodegradable magnesium alloy primed through novel additive manufacturing assisted investment casting. Mater. Lett. 2020, 275, 128137. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Prakash, C.; Ramakrishna, S. On investigating the soda-lime shot blasting of AZ31 alloy: Ef-fects on surface roughness, material removal rate, corrosion resistance, and bioactivity. J. Magnes. Alloy. 2021, 9, 1272–1284. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Farina, I.; Fraternali, F.; Feo, L. Physical-mechanical characterization of biodegradable Mg-3Si-HA composites. PSU Res. Rev. 2018, 2, 152–174. [Google Scholar] [CrossRef] [Green Version]
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Xiao, J.; Shu, D.W.; Wang, X. Effect of strain rate and temperature on the mechanical behavior of magnesium nanocomposites. Int. J. Mech. Sci. 2014, 89, 381–390. [Google Scholar] [CrossRef]
- Zengin, H.; Turen, Y. Effect of La content and extrusion temperature on microstructure, texture and mechanical properties of Mg-Zn-Zr magnesium alloy. Mater. Chem. Phys. 2018, 214, 421–430. [Google Scholar] [CrossRef]
- Shen, J.; Yin, W.; Kondoh, K.; Jones, T.L.; Kecskes, L.J.; Yarmolenko, S.N.; Wei, Q. Mechanical behavior of a lantha-num-doped magnesium alloy at different strain rates. Mater. Sci. Eng. A 2015, 626, 108–121. [Google Scholar] [CrossRef]
- Malik, A.; Chaudry, U.M.; Yan, T.; Long, J.; Li, C.; Wang, Y. Achieving higher dynamic me-chanical response by adjusting texture through twinning in a ZK61 Mg alloy. J. Alloys Compd. 2022, 902, 163755. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Asif, M.; She, J.; Ullah, A. Improved mechanical proprieties of “magnesium based composites” with titanium–aluminum hybrids. J. Magnes. Alloy. 2015, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aatthisugan, I.; Rose, A.R.; Jebadurai, D.S. Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J. Magnes. Alloy. 2017, 5, 20–25. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, X.; Gupta, M.; Wu, K.; Hu, X.; Zheng, M. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties. Sci. Rep. 2016, 6, 38824. [Google Scholar] [CrossRef]
- Malik, A.; Wang, Y.; Huanwu, C.; Nazeer, F.; Ahmed, B.; Khan, M.A.; Mingjun, W. Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate com-pression over a wide range of temperatures. Mater. Sci. Eng. A 2020, 771, 138649. [Google Scholar] [CrossRef]
- Arokiasamy, S.; Ronald, B.A. Experimental investigations on the enhancement of mechanical properties of magnesium-based hybrid metal matrix composites through friction stir processing. Int. J. Adv. Manuf. Technol. 2017, 93, 493–503. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Gupta, M.K.; Mia, M.; Królczyk, G.; Khanna, N. Synthesis, characterization, corrosion re-sistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applica-tions. Materials 2018, 11, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Pistidda, C.; Gizer, G.; Klassen, T.; Dornheim, M. Mg-based materials for hydrogen storage. J. Magnes. Alloy. 2021, 9, 1837–1860. [Google Scholar] [CrossRef]
- Wu, L.; Wu, R.; Hou, L.; Zhang, J.; Sun, J.; Zhang, M. Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering. J. Mater. Eng. Perform. 2017, 26, 5495–5500. [Google Scholar] [CrossRef]
- Mishra, M.; Prakash, C.; Shabadi, R.; Singh, S. Mechanical and microstructural characterization of magnesi-um/multi-walled carbon nanotubes composites fabricated via friction stir processing. In Advances in Materials Science and Engineering; Springer: Singapore, 2020; pp. 137–147. [Google Scholar]
- Srichok, T.; Pitakaso, R.; Sethanan, K.; Sirirak, W.; Kwangmuang, P. Combined response surface method and modified differential evolution for parameter optimization of friction stir welding. Processes 2020, 8, 1080. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Yazdabadi, H.G.; Kokabi, A.; Simchi, A. Friction stir welding of a P/M Al–Al2O3 nanocomposite: Microstructure and mechanical properties. Mater. Sci. Eng. A 2013, 585, 222–232. [Google Scholar] [CrossRef]
- Raheja, G.S.; Singh, S.; Prakash, C. Processing and characterization of Al5086-Gr-SiC hybrid surface composite using friction stir technique. Mater. Today Proc. 2020, 28, 1350–1354. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Prakash, C.; Kumar, R. On the mechanical characteristics of friction stir welded dissimilar polymers: Statistical analysis of the processing parameters and morphological investigations of the weld joint. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Mishra, R.; Mahoney, M.; McFadden, S.; Mara, N.; Mukherjee, A. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr. Mater. 1999, 42, 163–168. [Google Scholar] [CrossRef]
- Dinaharan, I.; Zhang, S.; Chen, G.; Shi, Q. Development of titanium particulate reinforced AZ31 magnesium matrix composites via friction stir processing. J. Alloys Compd. 2019, 820, 153071. [Google Scholar] [CrossRef]
- Alam, N.; Iqbal, M.; Prakash, C.; Singh, S.; Basak, A. Influence of the microstructural and mechanical properties of reinforced graphene in magnesium matrix fabricated by friction stir processing. In Advances in Materials Science and Engineering; Springer: Singapore, 2020; pp. 235–247. [Google Scholar]
- Sánchez de la Muela, A.M.; Duarte, J.; Santos Baptista, J.; García Cambronero, L.E.; Ruiz-Román, J.M.; Elorza, F.J. Stir Casting Routes for Processing Metal Matrix Syntactic Foams: A Scoping Review. Processes 2022, 10, 478. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, Y.; Zhou, R. Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing. Wear 2013, 305, 286–290. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Sohi, M.H.; Salehi, A.; Tahavvori, R. Formations of AZ91/Al2O3 nano-composite layer by friction stir processing. J. Magnes. Alloy. 2016, 4, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Dinaharan, I.; Zhang, S.; Chen, G.; Shi, Q. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing. Mater. Sci. Eng. A 2019, 772, 138793. [Google Scholar] [CrossRef]
- Sajjadi, S.; Ezatpour, H.; Beygi, H. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng. A 2011, 528, 8765–8771. [Google Scholar] [CrossRef]
- Ezatpour, H.; Torabi-Parizi, M.; Sajjadi, S.A. Microstructure and mechanical properties of extruded Al/Al2O3 composites fabricated by stir-casting process. Trans. Nonferrous Met. Soc. China 2013, 23, 1262–1268. [Google Scholar] [CrossRef]
- Sajjadi, S.; Ezatpour, H.; Parizi, M.T. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater. Des. 2012, 34, 106–111. [Google Scholar] [CrossRef]
- Ezatpour, H.R.; Sajjadi, S.A.; Sabzevar, M.H.; Huang, Y. Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater. Des. 2014, 55, 921–928. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Liu, Y.; Chen, X.; Lin, H.; Pan, R.; Asif, M.; She, J. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. J. Magnes. Alloy. 2016, 4, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, A.; Krishnan, P.K.; Muraliraja, R. A review on the production of metal matrix composites through stir casting—Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 2019, 42, 213–245. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Zhao, H.; Ding, C.; Huang, Z.; Zhai, H.; Guo, Z.; Xiong, S. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J. Alloys Compd. 2017, 702, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Chelliah, N.M.; Singh, H.; Surappa, M. Correlation between microstructure and wear behavior of AZX915 Mg-alloy reinforced with 12 wt.% TiC particles by stir-casting process. J. Magnes. Alloy. 2016, 4, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Khandelwal, A.; Mani, K.; Srivastava, N.; Gupta, R.; Chaudhari, G. Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Compos. Part B Eng. 2017, 123, 64–73. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Wang, L.; Hu, X.; Wu, K.; Wang, Y.; Huang, Y. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater. Des. 2014, 57, 638–645. [Google Scholar] [CrossRef]
- Sameer, K.D.; Suman, K.N.S.; Tara, S.C.; Ravindra, K.; Palash, P.; Venkata Siva, S.B. Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method. J. Magnes. Alloy. 2017, 5, 48–55. [Google Scholar] [CrossRef]
- Abbas, A.; Huang, S.J.; Ballóková, B.; Sülleiová, K. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process. Tribol. Int. 2019, 142, 105982. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, S.; Pabla, B.S.; Sidhu, S.S.; Uddin, M. Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Process. 2018, 34, 357–368. [Google Scholar] [CrossRef]
- Xue, Z.; Han, X.; Zhou, Z.; Wang, Y.; Li, X.; Wu, J. Effects of Microstructure and Texture Evolution on Strength Improvement of an Extruded Mg-10Gd-2Y-0.5 Zn-0.3 Zr Alloy. Metals 2018, 8, 1087. [Google Scholar] [CrossRef] [Green Version]
- Youh, M.-J.; Huang, Y.-R.; Peng, C.-H.; Lin, M.-H.; Chen, T.-Y.; Chen, C.-Y.; Liu, Y.-M.; Pu, N.-W.; Liu, B.-Y.; Chou, C.-H.; et al. Using Graphene-Based Composite Materials to Boost Anti-Corrosion and Infrared-Stealth Performance of Epoxy Coatings. Nanomaterials 2021, 11, 1603. [Google Scholar] [CrossRef]
- Singh, B.P.; Singh, R.; Mehta, J.S.; Prakash, C. August. Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications. In Materials Science and Engineering; IOP Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 225, p. 012050. [Google Scholar]
- Prakash, C.; Singh, S.; Abdul-Rani, A.M.; Uddin, M.S.; Pabla, B.S.; Puri, S. Spark plasma sintering of Mg-Zn-Mn-Si-HA alloy for bone fixation devices: Fabrication of biodegradable low elastic porous Mg-Zn-Mn-Si-HA alloy. In Handbook of Research on Green Engineering Techniques for Modern Manufacturing; IGI Global: Hershey, PA, USA, 2019; pp. 282–295. [Google Scholar]
- Hidalgo, A.A.; Frykholm, R.; Ebel, T.; Pyczak, F. Powder Metallurgy Strategies to Improve Properties and Processing of Titanium Alloys: A Review. Adv. Eng. Mater. 2017, 19, 1600743. [Google Scholar] [CrossRef]
- Dinaharan, I.; Akinlabi, E.T. Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Compos. Commun. 2018, 9, 22–26. [Google Scholar] [CrossRef]
- Li, C.P.; Wang, Z.G.; Zha, M.; Wang, C.; Yu, H.C.; Wang, H.Y.; Jiang, Q.C. Effect of pre-oxidation treatment of Nano-SiC particulates on microstructure and mechanical properties of SiC/Mg-8Al-1Sn composites fabricated by powder metallurgy combined with hot extrusion. Materials 2016, 9, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Miki, S.; Soga, T.; Itoh, I.; Todoroki, H.; Hosono, T.; Sakaki, K.; Hayashi, T.; Kim, Y.; Endo, M.; et al. Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scr. Mater. 2008, 58, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Du, X.M.; Zhen, K.F.; Liu, F.G. Graphene reinforced magnesium matrix composites by hot pressed sintering. Dig. J. Nanomater. Bios 2018, 13, 827–833. [Google Scholar]
- Munir, K.; Wen, C.; Li, Y. Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. J. Magnes. Alloy. 2020, 8, 269–290. [Google Scholar] [CrossRef]
- Purohit, R.; Dewang, Y.; Rana, R.S.; Koli, D.; Dwivedi, S. Fabrication of magnesium matrix composites using powder metallurgy process and testing of properties. Mater. Today Proc. 2018, 5, 6009–6017. [Google Scholar] [CrossRef]
- Chiu, C.; Huang, H.M. Microstructure and properties of Mg-Zn-Y alloy powder compacted by equal channel angular pressing. Materials 2018, 11, 1678. [Google Scholar] [CrossRef] [Green Version]
- Nickel, D.; Dietrich, D.; Mehner, T.; Frint, P.; Spieler, D.; Lampke, T. Effect of strain localization on pitting corrosion of an AlMgSi0.5 alloy. Metals 2015, 5, 172–191. [Google Scholar] [CrossRef] [Green Version]
- Satish, J.; Satish, K. Preparation of magnesium metal matrix composites by powder metallurgy process. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012130. [Google Scholar] [CrossRef]
- Dey, A.; Pandey, K.M. Magnesium metal matrix composites—A review. Rev.Adv. Mater. Sci. 2015, 42, 58–67. [Google Scholar]
- Ye, H.Z.; Liu, X.Y. Review of recent studies in magnesium matrix composites. J. Mater. Sci. 2004, 39, 6153–6171. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Li, Q.; Tian, B. Compression behavior of magnesium/carbon nanotube composites. J. Mater. Res. 2013, 28, 1877–1884. [Google Scholar] [CrossRef]
- Kondoh, K.; Fukuda, H.; Umeda, J.; Imai, H.; Fugetsu, B.; Endo, M. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites. Mater. Sci. Eng. A 2010, 527, 4103–4108. [Google Scholar] [CrossRef]
- Umeda, J.; Kondoh, K.; Imai, H. Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 2009, 504, 157–162. [Google Scholar] [CrossRef]
- Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. [Google Scholar] [CrossRef]
- Kumar, H.P.; Xavior, M.A. Graphene Reinforced Metal Matrix Composite (GRMMC): A Review. Procedia Eng. 2014, 97, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Tabandeh-Khorshid, M.; Kumar, A.; Omrani, E.; Kim, C.; Rohatgi, P. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos. Part B Eng. 2019, 183, 107664. [Google Scholar] [CrossRef]
- Naseer, A.; Ahmad, F.; Aslam, M.; Guan, B.H.; Harun, W.S.W.; Muhamad, N.; Raza, M.R.; German, R.M. A review of processing techniques for graphene-reinforced metal matrix composites. Mater. Manuf. Process. 2019, 34, 957–985. [Google Scholar] [CrossRef]
- Raja, K.S.; Kumar, U.M.; Mathivanan, S.; Ganesan, S.; ArunKumar, T.; Hemanandh, J.; Kumar, J.S. Mechanical and microstructural properties of graphene reinforced magnesium composite. Mater. Today Proc. 2020, 44, 3571–3574. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci. Mater. Int. 2014, 24, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Tabandeh-Khorshid, M.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int. J. 2016, 19, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Saxena, K.K. An outlook on the influence on mechanical properties of AZ31 reinforced with graphene nanoparticles using powder metallurgy technique for biomedical application. Mater. Today Proc. 2022, 56, 2278–2287. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Asif, M.; Tang, A. Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs). J. Ind. Eng. Chem. 2014, 20, 4250–4255. [Google Scholar] [CrossRef]
- Lim, C.; Leo, D.; Ang, J.; Gupta, M. Wear of magnesium composites reinforced with nano-sized alumina particulates. Wear 2005, 259, 620–625. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Guo, W.; Lin, H.; Asif, M.; Irfan, M. Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg–3Al–1Zn alloy. Mater. Charact. 2015, 106, 382–389. [Google Scholar] [CrossRef]
- Dixit, S.; Sharma, K. An Empirical Study of Major Factors Affecting Productivity of Construction Projects. In Lecture Notes in Civil Engineering; Springer: Singapore, 2020; Volume 61. [Google Scholar] [CrossRef]
- Dixit, S.; Singh, S.; Singh, S.; Varghese, R.G.; Pandey, A.K.; Varshney, D. Role of Solar energy and issues in its implementation in the Indian context. In Proceedings of the ICDAMS 2018, Saveetha School of Engineering, Chennai, Tamil Nadu, India, 6–7 April 2018; Volume 172, p. 06001. [Google Scholar] [CrossRef]
- Dixit, S. Analysing the Impact of Productivity in Indian Transport Infra Projects. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Creative Construction Conference (CCC 2021), Budapest, Hungary, 28–30 June 2021; Volume 1218, p. 12059. [Google Scholar]
- Dixit, S.; Arora, R.; Kumar, K.; Bansal, S.; Vatin, N.; Araszkiewicz, K.; Epifantsev, K. Replacing E-waste with coarse aggregate in architectural engineering and construction industry. Mater. Today Proc. 2021, 56, 2353–2358. [Google Scholar] [CrossRef]
- Dixit, S.; Mandal, S.N.; Thanikal, J.V.; Saurabh, K. Evolution of studies in construction productivity: A systematic literature review (2006–2017). Ain Shams Eng. J. 2019, 10, 555–564. [Google Scholar] [CrossRef]
- Dixit, S.; Sharma, K.; Ingh, S. Identifying and Analysing Key Factors Associated with Risks in Construction Projects. In Emerging Trends in Civil Engineering; Babu, K.G., Rao, H.S., Amarnath, Y., Eds.; Springer: Singapore, 2020; pp. 25–32. [Google Scholar]
- Dixit, S.; Stefańska, A. Digitisation of contemporary fabrication processes in the AEC sector. Mater. Today Proc. 2021, 56, 1882–1885. [Google Scholar] [CrossRef]
- Dixit, S.; Stefańska, A.; Singh, P. Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures. Int. J. Constr. Manag. 2021, 1–9. [Google Scholar] [CrossRef]
- Kumar, K.; Arora, R.; Khan, S.; Dixit, S. Characterization of fly ash for potential utilization in green concrete. Mater. Today Proc. 2021, 56, 1886–1890. [Google Scholar] [CrossRef]
- Rai, R.K.; Gosain, A.K.; Singh, P.; Dixit, S. Farm Advisory Services for Farmers Using SWAT and APEX Model. In International Conference Sustainable Energy Systems: Innovative Perspectives; Springer: Cham, Switzerland, 2020; pp. 444–458. [Google Scholar]
- Shah, M.N.; Dixit, S.; Kumar, R.; Jain, R.; Anand, K. Causes of delays in slum reconstruction projects in India. Int. J. Constr. Manag. 2019, 21, 452–467. [Google Scholar] [CrossRef]
- Singh, P.; Dixit, S.; Sammanit, D.; Krishnan, P. The Automated Farmlands of Tomorrow: An IoT Integration with Farmlands. IOP Conference Series: Materials Science and Engineering, Creative Construction Conference (CCC 2021), Budapest, Hungary, 28–30 June 2021; 1218, p. 12048. [Google Scholar]
- Singh, S.; Dixit, S.; Sahai, S.; Sao, A.; Kalonia, Y.; Kumar, R.S. Key Benefits of Adopting Lean Manufacturing Principles in Indian Construction Industry. MATEC Web Conf. 2018, 172, 05002. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Zhang, X.; Qiu, Y.; Gu, M. Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates. Compos. Sci. Technol. 2005, 65, 1736–1742. [Google Scholar] [CrossRef]
- Lim, C.; Lim, S.; Gupta, M. Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear 2003, 255, 629–637. [Google Scholar] [CrossRef]
- Saravanan, R.; Surappa, M. Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite. Mater. Sci. Eng. A 2000, 276, 108–116. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, H.; Ma, B.; Wang, Y.; Zhao, F. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloys Compd. 2005, 386, 177–181. [Google Scholar] [CrossRef]
- Badini, C.; Marino, F.; Montorsi, M.; Guo, X. Precipitation phenomena in B4C-reinforced magnesium-based composite. Mater. Sci. Eng. A 1992, 157, 53–61. [Google Scholar] [CrossRef]
- Gopal Krishna, U.B.; Sreenivas Rao, K.V.; Vasudeva, B. Effect of percentage reinforcement of B4C on the tensile property of aluminium matrix composites. Int. J. Mech. Eng. Robot. Res. 2012, 1, 290–295. [Google Scholar]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M.; She, J.; Gou, J.; Mao, J.; Hu, H. Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 2014, 49, 285–293. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Hussain, S.; Gou, J.; Mao, J. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 2015, 23, 243–250. [Google Scholar] [CrossRef]
- Tripathi, D.R.; Vachhani, K.H.; Bandhu, D.; Kumari, S.; Kumar, V.R.; Abhishek, K. Experimental investigation and op-timization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms. Mater. Manuf. Processes 2021, 36, 803–813. [Google Scholar] [CrossRef]
- Bandhu, D.; Vora, J.J.; Das, S.; Thakur, A.; Kumari, S.; Abhishek, K.; Sastry, M.N. Experimental study on application of gas metal arc welding based regulated metal deposition technique for low alloy steel. Mater. Manuf. Processes 2022, 37, 1–19. [Google Scholar] [CrossRef]
- Sonia, P.; Kumari, S. Performance Evaluation Of Multi-Fibre (Hybrid) Polymer Composite. IOP Conf. Series Mater. Sci. Eng. 2021, 1116, 012027. [Google Scholar] [CrossRef]
- Kumari, S.; Nakum, B.; Bandhu, D.; Abhishek, K. Multi-Attribute Group Decision Making (MAGDM) Using Fuzzy Lin-guistic Modeling Integrated With the VIKOR Method for Car Purchasing Model. Int. J. Decis. Support Syst. Technol. 2022, 14, 1–20. [Google Scholar] [CrossRef]
Metal Matrix | Reinforcement | ||
---|---|---|---|
Whiskers | Fibres | Particulates | |
Aluminium (Al) | Graphite | Jute fibre | SiC |
Magnesium (Mg) | Cellulose | Kevlar fibre | Al2O3 |
Nickel (Ni) | Carbon fibre | Graphene | |
Titanium (Ti) | Carbon nanotubes | ||
Copper (Cu) | |||
Iron (Fe) |
Sr. No. | Industry | Applications |
---|---|---|
1 | Aerospace | Helicopter transmission systems |
Fan frames of jet engines | ||
Control surfaces | ||
Structural items | ||
Edge flaps | ||
Spacecrafts | ||
Missiles | ||
2 | Automotive | Engine blocks |
Crankcases | ||
Transmission cases | ||
Radiator supports | ||
Chassis | ||
Interiors | ||
Door inners | ||
3 | Electronics | Radars |
Mobile devices | ||
Smartphones | ||
Computers | ||
TVs | ||
4 | Biomedical | Orthopaedic implants |
Artificial knees | ||
Tibial components | ||
Bone plates | ||
Bone screws | ||
Femoral hips | ||
Acetabular cups | ||
5 | Hydrogen storage | Solid-state hydrogen storage |
Sr. No. | Components | Process | Key Findings | Reference |
---|---|---|---|---|
1. | AZ91 + 0.8%vol. Al2O3 | Friction stir processing | Optimum hardness and wear resistance were obtained when the rotational speed was 800 rpm and 40 mm/min travel speed. | [55] |
2. | Mg + 5 wt.% SiC and 5 wt.% Al2O3 | Friction stir processing | Optimum tensile strength, hardness and wear resistance were obtained when rotational speed was 540 rpm and 10 mm/min linear speed. | [41] |
3. | AZ31 + 7, 14 and 21 vol.% Titanium particles | Friction stir processing | AZ31/21 vol.% Ti MMC showed reduced grain size, improved tensile strength, and ductility. | [56] |
4. | AZ31 + nHA (Nano-hydroxyapatite reinforced) | Friction stir processing | The sample made was found to be corrosion resistant and biocompatible for biomedical applications. | [40] |
5. | AZ31 + 18 vol.% Fly ash | Friction stir processing | The grain size is obtained as 6.09 μm and microhardness is obtained as 110.29 VHN. The microstructure had a uniform distribution of Fly ash particles along the stir zone. | [75] |
6. | AZ31 + (0.3% CNT, 0.2% CNT + 0.1% Al2O3, 0.15% CNT + 0.15% Al2O3, 0.1% CNT + 0.2% Al2O3, 0.3% Al2O3) | Friction stir processing | Highest hardness was obtained to be HV112 for AZ31 + 0.2% Al2O3 + 0.1% CNT specimen. When the load was 1.95 MPa and higher, the wear and friction coefficient of AZ31 + 0.1% A12O3 + 0.2% CNTs specimen was lowest among all the specimens. | [54] |
7. | AZ91D + 5, 10, 15 and 20 vol.% Ti2AlC | Stir casting | Yield strength, hardness, compressive strength, and Young’s modulus increased with increasing fraction of Ti2AlC, while the optimum UTS was found at 10% Ti2AlC fraction. | [63] |
8. | AZ91 + 12 wt.% TiC | Stir casting | Comparison was made between as-cast and T4 heat-treated specimens. Fracture toughness, microhardness and friction coefficient are higher in the as-cast specimen while wear rate is high in the heat-treated specimen. | [64] |
9. | AZ91D + 5, 10, 15, 20 vol.% SiC | Ultrasound-assisted stir casting | Optimum time for ultrasonic treatment was found to be 20 min. Liquid stir for about 5 min improved the distribution of SiC particles. Highest UTS was found at 15% concentration. | [66] |
10. | AZ31 + 1.5, 3.0 wt.% Graphene nanoplatelets (GNPs) | Stir casting | At room temperature, the 3% GNP specimen showed the highest hardness and UTS while the 1.5% GNP specimen showed highest UCS. The UTS reduces as the temperature rises from 25 °C to 300 °C. | [54] |
11. | AZ31 + 0.1, 0.5, and 1 wt.% CNT | Stir casting | Hardness increases with an increase in % of CNT and ageing further improves it. Density increases while porosity decreases as % of CNT increases. Both mass and volume wear loss decrease with increase in CNT % and the coefficient of friction initially decreases and then remains almost uniform. | [68] |
12. | AZ31 + 0.5%, 1% and 2% wt.% Al2O3 | Ultrasound-assisted stir casting | The melt was subjected to ultrasonic treatment in two ways, one outside the furnace (AC-UST) and the other within the furnace (Iso-UST). The hardness increased with increase in % of Al2O3 and the values are on the higher side for Iso-UST specimens. The ultimate tensile strength of AC-UST specimens increases as the alumina percentage increases. | [65] |
13. | AZ91D + 2, 3, 4 wt.% CNTs | Stir casting | Hardness increases with increase in % of CNT and is highest for 4% CNT specimen on the other hand the specimen having 3% CNT has the highest ultimate tensile strength and yield strength. | [55] |
14. | (Mg powder + 2 wt.% CNT) | Powder metallurgy | The Young’s modulus of Mg–2 wt.% CNTs improved by 9% when compared to unreinforced Mg and that is validated through resonant measurements. Magnesium matrix and carbon nanotubes were observed to have strong bonding. The rupture strength, strain after fracture and yield strength are all comparable to unreinforced Mg. | [18] |
15. | Mg powder + CNT (0.18 wt.%), Al particles (0.5, 1 and 1.5 wt.%) | Powder metallurgy | Optimum hardness and ultimate compressive strength were observed for Mg/1.50 Al + 0.18 CNT specimen. | [15] |
16. | (Mg powder + 0.3 wt.% pristine CNT), (Mg powder + 0.3 wt.% Ni-CNT) | Powder metallurgy | The density of the composites did not change significantly, but the porosity did. Microhardness, ultimate tensile strength and ductility were improved significantly in Mg/0.3 wt.% Ni-CNT composite but the same was decreased in Mg/0.3 wt.% CNT composite as compared to pure Mg. | [14] |
17. | AZ31 + 1 wt.% CNTs | Powder metallurgy | When compared to the base metal and unreinforced weld, the CNT-reinforced weld had higher microhardness (67 HV), tensile strength (272 MPa) and yield strength (182 MPa). | [19] |
18. | AZ31 + Ni-CNT concentrations (0.5, 1, 1.5 wt.%) | Hot-press sintering | Uniform distribution of Ni-coated CNTs was observed. Optimum tensile and microhardness properties were obtained in AZ31/1% Ni-CNT composite. | [44] |
19. | Mg powder + CNT contents (2.0, 4.0, 6.0, and 8.0 wt.%) | In situ synthesis followed by powder metallurgy process | The Mg-coated CNTs have shown good interfacial bonding with the Mg matrix. Optimum tensile and microhardness properties were obtained in 4.0 wt.% CNT-Mg composite. | [1] |
20. | AZ31 + reduced graphene oxide(r-GO) wt.% (0.2, 0.3, 0.4, 0.5) | Solvent-based powder metallurgy | As the % of r-GO increases the porosity increases and density decreases. At 0.4% r-GO optimum hardness, wear and corrosion properties were obtained. | [76] |
Sr. No. | Matrix Material | Reinforcement | Reinforcement Particle Size | Blending Speed | Blending Time | Reference |
---|---|---|---|---|---|---|
1. | Mg powder | Multiwalled Carbon nanotubes | Diameter = 20 nm | 50 RPM | 10 h | [21] |
2. | AZ31 | Multiwalled Carbon nanotubes | Diameter = 50 nm | 300 RPM | 4 h | [19] |
3. | AZ91 | Multiwalled Carbon nanotubes | Diameter = 30–50 nm | 800 RPM | 5 h | [76] |
4. | Mg powder | Multiwalled Carbon nanotubes | Diameter = 40–70 nm | 200 RPM | 1 h | [15] |
Aluminium powder | 7–15 µm | |||||
5. | Mg powder | Multiwalled Carbon nanotubes | Diameter = 40–70 nm | 200 RPM | 1 h | [22] |
Alumina powder | 50 nm | |||||
6. | Mg powder | Ni-coated Carbon nanotubes | Diameter = 10–20 nm | 200 RPM | 1 h | [14] |
7. | AZ31 | Ni-coated Carbon nanotubes | Diameter = 10–30 nm | 1500 RPM | 2 h | [44] |
8. | Mg powder | Graphene | Thickness = 0.33 nm | 40 RPM | 72 h | [77] |
9. | Mg powder | Graphene nanoplatelets | G5: length = 5 µm, thickness = 9 nm | 300 RPM | 11 h | [78] |
G15: length = 15 µm, thickness = 5 nm |
Sr. No. | Matrix Material | Reinforcement | Compacting Pressure | Compact Size | Reference |
---|---|---|---|---|---|
1. | Mg powder | Multiwalled Carbon nanotubes | 120 MPa | - | [17] |
728 MPa | Height = 40 mm, Diameter = 35 mm | [21] | |||
2. | AZ31 | Multiwalled Carbon nanotubes | 500 MPa | Diameter = 20 mm | [19] |
3. | AZ91 | Multiwalled Carbon nanotubes | 25.5 MPa | Height = 120 mm, Diameter = 6 mm | [77] |
4. | Mg powder | Multiwalled Carbon nanotubes and Aluminium powder | 97 bar (50 tons) | Height = 40 mm, Diameter = 35 mm | [15] |
5. | Mg powder | Multiwalled Carbon nanotubes and Alumina powder | 50 tons | Diameter = 35 mm | [22] |
6. | Mg powder | Ni-coated Carbon nanotubes | 713 MPa | Height = 40 mm, Diameter = 35 mm | [14] |
7. | AZ31 | Ni-coated Carbon nanotubes | 300 MPa | Height = 40 mm, Diameter = 35 mm | [37] |
8. | Mg powder | Graphene nanoplatelets | 760 MPa | - | [79] |
9. | Mg powder | Silicon carbide particle | 400 MPa | - | [80] |
10. | Mg powder | Boron carbide | 50 MPa (Hot pressing at 600 °C) | - | [81] |
300 MPa | 25 × 5 × 5 mm | [82] |
Sr. No. | Matrix Material | Reinforcement | Sintering Temperature | Sintering Time | Reference |
---|---|---|---|---|---|
1. | Mg powder | Multiwalled Carbon nanotubes | 630 °C | 2 h | [21] |
2. | Mg powder | Multiwalled Carbon nanotubes | 560 °C and 30 MPa | 10 min | [32] |
3. | AZ31 | Multiwalled Carbon nanotubes | 400 °C | 1 h | [19] |
4. | AZ91 | Multiwalled Carbon nanotubes | 550 °C | 5 h | [77] |
5. | Mg powder | Multiwalled Carbon nanotubes and Aluminium powder | 640 °C | 13 min | [15] |
6. | Mg powder | Multiwalled Carbon nanotubes and Alumina powder | 630 °C | 25 min | [22] |
7. | Mg powder | Ni-coated Carbon nanotubes | 640 °C and soaked at 400 °C | 1 h | [14] |
8. | AZ31 | Ni-coated Carbon nanotubes | 590 °C and 15 MPa | 4 h | [37] |
9. | Mg powder | Graphene | 610 °C and 25 MPa | 1.5 h | [78] |
10. | Mg powder | Graphene nanoplatelets | 610 °C | 120 min | [79] |
11. | Mg powder | Silicon carbide Particle | 460 °C | 30 min | [80] |
12. | Mg powder | Silicon carbide and Alumina powder | 550 °C | 150 min | [83] |
13. | Mg powder | Boron carbide | 600 °C | 1.5 h | [81] |
14. | Mg powder | Boron carbide | 420 °C and 50 MPa | 5 min | [82] |
Sr. No. | Matrix Material | Reinforcement | Extrusion Ratio | Extrusion Temperature | Reference |
---|---|---|---|---|---|
1. | Mg powder | Multiwalled Carbon nanotubes | 25:1 | 350 °C | [21] |
2. | Mg powder | Multiwalled Carbon nanotubes and Aluminium powder | 26:1 | 350 °C | [15] |
3. | Mg powder | Ni-coated Carbon nanotubes | 25:1 | 350 °C | [14] |
4. | AZ31 | Multiwalled Carbon nanotubes | 5:1 | 400 °C | [19] |
5. | AZ91 | Multiwalled Carbon nanotubes | 9:1 | 450 °C | [77] |
6. | Mg powder | Multiwalled Carbon nanotubes and Alumina powder | 25:1 | 350 °C | [22] |
Sr. No. | Components | Ratio | Mechanical Properties | Reference | |||
---|---|---|---|---|---|---|---|
Hardness | Tensile Strength | Compressive Strength | Bending Strength | ||||
1. | Mg powder, Graphene | Graphene wt.% (0.25–1.25) | 89.9 HV | - | - | - | [78] |
2. | AZ31, reduced graphene oxide | Reduced graphene oxide wt.% (0.2, 0.3, 0.4, 0.5) | 64.6 HV | - | - | - | [76] |
3. | Mg powder, Graphene nanoplatelets (GNPs) | GNPs 0.1, 0.2, and 0.3 wt.% | - | - | 246 MPa | - | [79] |
4. | Mg powder, Graphene nanoplatelets (GNPs) | GNPs 0.3 wt.% | 68.5 HV | 238 MPa | - | - | [107] |
5. | Magnesium powder, Aluminium powder Graphene nanoplatelets (GNPs) | Mg-0.5 Al + 0.18 GNPs Mg-1.0 Al + 0.18 GNPs Mg-1.5 Al + 0.18 GNPs | 60 HV | 268 MPa | - | - | [108] |
6. | Magnesium powder, Copper powder Graphene nanoplatelets (GNPs) | Mg-1 Cu + 0.18 GNPs Mg-1 Cu + 0.36 GNPs Mg-1 Cu + 0.54 GNPs | 56.7 HV | 260 MPa | 420 MPa | - | [6] |
7. | Mg powder, SiC particulate | SiCp 10, 20 and 30 wt.% | 90 HRB | 87.38 MPa | 122.71 MPa | [80] | |
8. | Mg powder, SiC, Al2O3 | Mg-5% SiC + 5% Al2O3, Mg-10% SiC + 10%Al2O3, Mg-15% SiC + 15% Al2O3 | 45.39 HV | - | - | - | [83] |
9. | Mg powder, B4C | 10, 20 and 30 wt.% B4C | 70 HV | - | 204.73 MPa | - | [81] |
10. | Mg powder, B4C | 10 wt.% B4C | 92 HV | - | - | 191 MPa | [82] |
11. | Magnesium powder of 98.5% pure, Alumina (Al2O3) 50 nm size, multiwalled carbon nanotube | Mg-1%CNT, Mg-0.7% CNT + 0.3%Al2O3, Mg-0.5% CNT + 0.5% Al2O3, Mg-0.3% CNT + 0.7% Al2O3 | 44.2 HV | 196 MPa | - | - | [22] |
12. | Multiwalled CNT and Magnesium powder 98.5% pure | CNT concentrations 0.06, 0.18 and 0.3 wt.% | 44 HR15T | 210 MPa | - | - | [21] |
13. | AZ91D, Multiwalled short CNTs | CNT contents (0.5, 1.0, 3.0, and 5.0 wt.%) | - | 388 MPa | - | - | [77] |
14. | Multiwalled CNT and Magnesium powder 99.8% pure | Mg + 2 wt.% CNT | - | 140 MPa | - | - | [18] |
15. | Multiwalled CNT, Magnesium powder 99.9% pure and carbamide 99% pure | CNT concentrations (0.05 and 1 wt.%) and overall porosities (20, 30, and 40 %) | - | - | 87.5 MPa | - | [17] |
16. | Magnesium powder 98.5% pure, Carbon nanotubes, Aluminium powder | Mg-0.18% CNT + 0.5% Al, Mg-0.18% CNT + 1.0% Al, Mg-0.18% CNT + 1.5% Al | 60 HV | - | 421 MPa | - | [15] |
17. | Magnesium powder 98.5% pure, pristine multiwalled carbon nanotubes, Nickel-coated multiwalled carbon nanotubes | Mg + 0.3 wt.% pristine CNT, Mg + 0.3 wt.% Ni-CNT | 55 HV | 237 MPa | - | - | [14] |
18. | AZ31, Multiwalled CNTs | 1 wt.% CNTs | 67 HV | 272 MPa | - | - | [19] |
19. | AZ31, Nickel-coated multiwalled carbonnanotubes | CNT contents (0.5, 1.0 and 1.5 wt.%) | 61.88 HV | 296 MPa | - | - | [44] |
20. | Magnesium powder 99.5% pure, Carbon nanotubes | Mg + 2% CNT, Mg + 4% CNT, Mg + 6% CNT, Mg + 8% CNT | 70.3 HV | 265.5 MPa | - | - | [1] |
21. | Magnesium powder 99.9% pure, Carbon nanotubes | Mg + 0.8% CNT | - | 238 MPa | - | - | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arora, G.S.; Saxena, K.K.; Mohammed, K.A.; Prakash, C.; Dixit, S. Manufacturing Techniques for Mg-Based Metal Matrix Composite with Different Reinforcements. Crystals 2022, 12, 945. https://doi.org/10.3390/cryst12070945
Arora GS, Saxena KK, Mohammed KA, Prakash C, Dixit S. Manufacturing Techniques for Mg-Based Metal Matrix Composite with Different Reinforcements. Crystals. 2022; 12(7):945. https://doi.org/10.3390/cryst12070945
Chicago/Turabian StyleArora, Gurmeet Singh, Kuldeep Kumar Saxena, Kahtan A. Mohammed, Chander Prakash, and Saurav Dixit. 2022. "Manufacturing Techniques for Mg-Based Metal Matrix Composite with Different Reinforcements" Crystals 12, no. 7: 945. https://doi.org/10.3390/cryst12070945
APA StyleArora, G. S., Saxena, K. K., Mohammed, K. A., Prakash, C., & Dixit, S. (2022). Manufacturing Techniques for Mg-Based Metal Matrix Composite with Different Reinforcements. Crystals, 12(7), 945. https://doi.org/10.3390/cryst12070945