Crystal Growth of RuS2 Using a Chemical Vapor Transport Technique and Its Properties
Abstract
:1. Introduction
2. Experimental Section
3. Analysis
3.1. Analysis by Microprobe
3.2. Analysis by X-ray
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topsoe, H.; Clausen, B.S.; Massoth, F.E. Hydrotreating Catalysis-Science and Technology. Springer 1996, 14, 1465. [Google Scholar] [CrossRef]
- Hulliger, F. Crystal Structure and Electrical Properties of Some Cobalt-Group Chalcogenides. Nature 1964, 204, 644–646. [Google Scholar] [CrossRef]
- Knop, O.; Reid, K.I.G.; Sutarno; Nakagawa, Y. Chalkogenides of the transition elements. VI. X-ray, neutron, and magnetic investigation of the spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4. Can. J. Chem. 1968, 46, 22. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Chianelli, R. Catalysis by transition metal sulfides: The relation between calculated electronic trends and HDS activity. J. Catal. 1984, 86, 400–412. [Google Scholar] [CrossRef]
- Ezzouia, H.; Heindl, R.; Parsons, R.; Tributsch, H. Visible light photo-oxidation of water with single-crystal RuS2 electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1983, 145, 279–292. [Google Scholar] [CrossRef]
- Heindl, R.; Parsons, R.; Redon, A.; Tributsch, H.; Vigneron, J. Photoelectrochemical behaviour of ruthenium disulphide electrodes in contact with aqueous electrolytes. Surf. Sci. 1982, 115, 91–103. [Google Scholar] [CrossRef]
- Ezzaouia, H.; Heindl, R.; Loriers, J. Synthesis of ruthenium and osmium dichalcogenide single crystals. J. Mater. Sci. Lett. 1984, 3, 625–626. [Google Scholar] [CrossRef]
- Ezzaouia, H.; Foise, J.W.; Gorochov, O. Crystal growth in tellurium fluxes and characterization of RuS2 single crystals. Mater. Res. Bull. 1985, 20, 1353–1358. [Google Scholar] [CrossRef]
- Fiechter, S.; Kuhne, H.-M. Crystal growth of RuX2 (X = 5, Se, Te) by chemical vapour transport and high temperature solution growth. J. Cryst. Growth 1987, 83, 517–522. [Google Scholar] [CrossRef]
- Hulliger, F. Electrical Properties of Pyrite-Type and Related Compounds with Zero Spin Moment. Nature 1963, 200, 1064–1065. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Chavan, H.S.; Jo, Y.; Cho, S.; Kim, J.; Pawar, S.M.; Gunjakar, J.L.; Inamdar, A.I.; Kim, H.; Im, H. One-step facile route to copper cobalt sulfide electrodes for supercapacitors with high-rate long-cycle life performance. J. Alloy. Compd. 2017, 724, 744–751. [Google Scholar] [CrossRef]
- Sai, R.; Gorochov, O.; Ezzaouia, H. The study of the electronic structure of RuS2. Results Phys. 2021, 26, 104393. [Google Scholar] [CrossRef]
- Castillo-Villalón, P.; Ramírez, J.; Maugé, F. Structure, stability and activity of RuS2 supported on alumina. J. Catal. 2008, 260, 65–74. [Google Scholar] [CrossRef]
- Spirkoska, D.; Efros, A.L.; Lambrecht, W.R.L.; Cheiwchanchamnangij, T.; Fontcuberta i Morral, A.; Abstreiter, G. Valence band structure of polytypic zinc-blende/wurtzite GaAs nanowires probed by polarization-dependent photoluminescence. Phys. Rev. B 2012, 85, 045309. [Google Scholar] [CrossRef] [Green Version]
- Cheiwchanchamnangij, T.; Lambrecht, W. Band structure parameters of wurtzite and zinc-blende GaAs under strain in the GW approximation. Phys. Rev. B 2011, 84, 035203. [Google Scholar] [CrossRef]
Sample | Temperature | (%) of extra Sulfure in RuS2 | Color of Monocristal | |
---|---|---|---|---|
White and dull | ||||
Dull gray | ||||
Dull gray | ||||
Dull gray | ||||
Dull gray | ||||
Light gray | ||||
Shiny gray | ||||
Shiny gray | ||||
Very Shiny gray |
Sample | Temperature | Excess of S in for RuS2 | Analysis of Composition at Microprobe | Amount of Precipitate O2 |
---|---|---|---|---|
CS1 | 1050 °C | 1 | RuS1.90 | 0.005 |
CS2 | 1050 °C | 2 | RuS1.92 | 0.005 |
CS4 | 1025 °C | 2 | RuS1.94 | - |
CS5 | 1000 °C | 1 | RuS1.95 | - |
CS7 | 950 °C | 1 | RuS1.96 | - |
CS9 | 900 °C | 1 | RuS1.97 | - |
Sample | Temperature | S2 (%) | ||||
---|---|---|---|---|---|---|
CS1 | 1050 °C | 1 | 5635 | 0.1085 | 2.118 | 2.369 |
CS3 | 1025 °C | 1 | 5630 | 0.1072 | 2.097 | 2.370 |
CS5 | 1000 °C | 1 | 5624 | 0.1075 | 2.094 | 2.367 |
CS6 | 1000 °C | 2 | 5617 | 0.1055 | 2.052 | 2.369 |
CS7 | 950 °C | 1 | 5611 | 0.105 | 2.041 | 2.368 |
CS9 | 900 °C | 1 | 5.609 | 0.101 | 1.990 | 2.373 |
Sample | Temperature | (%)S | a in Å | Concentration of RuSx | Eg Experimental (eV) |
---|---|---|---|---|---|
CS1 | 1050 °C | 1 | 5.635 | RuS1.90 | 1.25 |
CS3 | 1025 °C | 1 | 5.630 | RuS1.92 | 1.29 |
CS5 | 1000 °C | 1 | 5.624 | RuS1.95 | 1.36 |
CS6 | 1000 °C | 2 | 5.617 | RuS1.96 | 1.38 |
CS7 | 950 °C | 1 | 5.611 | RuS1.96 | 1.42 |
CS9 | 900 °C | 1 | 5.609 | RuS1.97 | 1.68 |
Samples | Eg (eV) | ||
---|---|---|---|
CS1 | 2.118 | 1.25 | 1050 |
CS3 | 2.097 | 1.29 | 1025 |
CS5 | 2.094 | 1.36 | 1000 |
CS7 | 2.041 | 1.42 | 950 |
CS9 | 1.990 | 1.68 | 900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sai, R.; Gorochov, O.; Alghamdi, E.A.; Ezzaouia, H. Crystal Growth of RuS2 Using a Chemical Vapor Transport Technique and Its Properties. Crystals 2022, 12, 994. https://doi.org/10.3390/cryst12070994
Sai R, Gorochov O, Alghamdi EA, Ezzaouia H. Crystal Growth of RuS2 Using a Chemical Vapor Transport Technique and Its Properties. Crystals. 2022; 12(7):994. https://doi.org/10.3390/cryst12070994
Chicago/Turabian StyleSai, Refka, Ouri Gorochov, Eman A. Alghamdi, and Hatem Ezzaouia. 2022. "Crystal Growth of RuS2 Using a Chemical Vapor Transport Technique and Its Properties" Crystals 12, no. 7: 994. https://doi.org/10.3390/cryst12070994
APA StyleSai, R., Gorochov, O., Alghamdi, E. A., & Ezzaouia, H. (2022). Crystal Growth of RuS2 Using a Chemical Vapor Transport Technique and Its Properties. Crystals, 12(7), 994. https://doi.org/10.3390/cryst12070994