Microstructural Modification Hardness and Surface Roughness of Hypereutectic Al-Si Alloys by a Combination of Bismuth and Phosphorus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Casting
2.3. Metallography
2.4. Differential Scanning Calorimetry
2.5. Hardness and Surface Roughness Tests
3. Results and Discussion
3.1. B390 Initial Microstructure
3.2. Effect of Bi and P on Microstructure
3.2.1. Primary Si Refinement
3.2.2. Primary Si Morphology
3.2.3. Eutectic Silicon and Intermetallic Compounds
3.3. Effect of Bi and P on Solidification Range
3.4. Effect of Bi and P on Hardness and Surface Roughness
3.4.1. Hardness Test
3.4.2. Surface Roughness
4. Conclusions
- (1)
- P addition has a positive effect on the refinement of primary Si, while Bi addition has a negative effect. However, addition of both P and Bi can be used to reduce the size and distribution of the primary silicon phase compared to unmodified and Bi only modified specimens.
- (2)
- The morphology of eutectic Si can be changed from flakes and coarse fibres to an evenly distributed fine lamellar structure by the addition of both P and Bi. The P content induces a high concentration of silicon atoms around the primary Si. Additionally, a modified condition using P and Bi together reduces the sizes of intermetallic phase regions.
- (3)
- The Bi content shows no significant effect on hardness. However, P addition yields a significant improvement in the hardness value, 81.93HRB or a 5.85% increase. Adding Bi and P together to the melt at levels of up to 1.0 wt% does not degrade the effect of P on hardness improvement of the modified alloys.
- (4)
- P addition increases the liquidus temperature, leading to the wider solidification range. This is due to AlP particles acting as nuclei for primary Si at higher reaction temperatures. Alternatively, the reduction of solidus temperature owing to an increase in Bi content results in a narrower solidification range leading to a modified eutectic Si and intermetallic compounds. In the case where P and Bi were added to the melt together, both the solidus and the liquidus temperatures were increased, leading to modification of both the primary Si and eutectic Si phases.
- (5)
- Among the P-Bi modified alloys, the most effective reduction in roughness from cutting at both low and high speeds was for the B390 alloy modified by addition of 0.1 wt%P and 1.0 wt%Bi by 26.5% and 57.7%, respectively. This is largely due to morphology changes of eutectic silicon from a large bulky primary Si and flakes to a fine primary Si with a lamellar eutectic. Additionally, Bi also eases machining efforts by acting as a lubricant during cutting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farahany, S.; Dahle, A.K.; Ourdjini, A.; Hekmat-Ardakan, A. Flake-fibrous transition of silicon in near-eutectic Al-11.7 Si-1.8 Cu-0.8 Zn-0.6 Fe-0.3 Mg alloy treated with combined effect of bismuth and strontium. J. Alloys Compd. 2016, 656, 944–956. [Google Scholar] [CrossRef]
- Shin, S.S.; Kim, E.S.; Yeom, G.Y.; Lee, J.C. Modification effect of Sr on the microstructures and mechanical properties of Al–10.5 Si–2.0 Cu recycled alloy for die casting. Mater. Sci. Eng. A 2012, 532, 151–157. [Google Scholar] [CrossRef]
- Al-Helal, K.; Stone, I.C.; Fan, Z. Simultaneous primary Si refinement and eutectic modification in hypereutectic Al–Si alloys. Trans. Indian Inst. Met. 2012, 65, 663–667. [Google Scholar] [CrossRef]
- Zuo, M.; Zhao, D.; Teng, X.; Geng, H.; Zhang, Z. Effect of P and Sr complex modification on Si phase in hypereutectic Al–30Si alloys. Mater. Des. 2013, 47, 857–864. [Google Scholar] [CrossRef]
- Kyffin, W.J.; Rainforth, W.M.; Jones, H. Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy. J. Mater. Sci. 2001, 36, 2667–2672. [Google Scholar] [CrossRef]
- Zuo, M.; Liu, X.; Sun, Q. Effects of processing parameters on the refinement of primary Si in A390 alloys with a new Al–Si–P master alloy. J. Mater. Sci. 2009, 44, 1952–1958. [Google Scholar] [CrossRef]
- Zuo, M.; Jiang, K.; Liu, X. Refinement of hypereutectic Al–Si alloy by a new Al–Zr–P master alloy. J. Alloys Compd. 2010, 503, 26–30. [Google Scholar] [CrossRef]
- Wang, E.R.; Hui, X.D.; Chen, G.L. Eutectic Al–Si–Cu–Fe–Mn alloys with enhanced mechanical properties at room and elevated temperature. Mater. Des. 2011, 32, 4333–4340. [Google Scholar] [CrossRef]
- Dang, B.; Jian, Z.Y.; Xu, J.F.; Chang, F.E.; Zhu, M. Effect of phosphorus and heat treatment on microstructure of Al-25% Si alloy. China Foundry 2017, 14, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Haili, D.; Guangjie, S.; Luoping, X. Microstructure and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P. Rare Met. 2008, 27, 59–63. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Li, H.; Liu, X. A new technique to modify hypereutectic Al–24% Si alloys by a Si–P master alloy. J. Alloys Compd. 2009, 477, 139–144. [Google Scholar] [CrossRef]
- Dai, H.; Liu, X. Effects of individual and combined additions of phosphorus, boron and cerium on primary and eutectic silicon in an Al-30Si alloy. Rare Met. 2009, 28, 651–655. [Google Scholar] [CrossRef]
- Hegde, S.; Prabhu, K.N. Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 2008, 43, 3009–3027. [Google Scholar] [CrossRef]
- Rao, A.G.; Deshmukh, V.P.; Prabhu, N.; Kashyap, B.P. Enhancing the machinability of hypereutectic Al-30Si alloy by friction stir processing. J. Manuf. Process. 2016, 23, 130–134. [Google Scholar] [CrossRef]
- Kamiya, M.; Yakou, T.; Sasaki, T.; Nagatsuma, Y. Effect of Si content on turning machinability of Al-Si binary alloy castings. Mater. Trans. 2008, 49, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Gan, J.Q.; Huang, Y.J.; Cheng, W.E.N.; Jun, D.U. Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al− Si alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2879–2890. [Google Scholar] [CrossRef]
- Barzani, M.M.; Farahany, S.; Yusof, N.M.; Ourdjini, A. The influence of bismuth, antimony, and strontium on microstructure, thermal, and machinability of aluminum-silicon alloy. Mater. Manuf. Process. 2013, 28, 1184–1190. [Google Scholar] [CrossRef]
- Samuel, A.M.; Doty, H.W.; Gallardo, S.V.; Samuel, F.H. The effect of Bi-Sr and Ca-Sr interactions on the microstructure and tensile properties of Al-Si-based alloys. Materials 2016, 9, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.R. Aluminum and Aluminum Alloys. In ASM Specialty Handbook; ASM International: Novelty, OH, USA, 1993. [Google Scholar]
- Farahany, S.; Ourdjini, A.; Idrsi, M.H.; Shabestari, S.G. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis. Thermochim. Acta 2013, 559, 59–68. [Google Scholar] [CrossRef]
- Chong, C.; Liu, Z.X.; Bo, R.E.N.; Wang, M.X.; Weng, Y.G.; Liu, Z.Y. Influences of com-plex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy. Trans. Nonferrous Met. Soc. China 2007, 17, 301–306. [Google Scholar]
- Lin, G.Y.; Kun, L.I.; Di, F.E.N.G.; Feng, Y.P.; Song, W.Y.; Xiao, M.Q. Effects of La–Ce addition on microstructure and mechanical properties of Al–18Si–4Cu–0.5 Mg alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1592–1600. [Google Scholar] [CrossRef]
- NADCA. NADCA Product Specification Standards for Die Castings; NADCA: Arlington Heights, IL, USA, 2005; pp. 3–5. [Google Scholar]
- Shanthi, C.; Porpatham, R.K.; Pappa, N. Image analysis for particle size distribution. Int. J. Eng. Technol. 2014, 6, 1340–1345. [Google Scholar]
- ASTM E562-19; Standard Test Method for Deter-Mining Volume Fraction by Systematic Manual Point Count. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E18-20; Standard Test Methods for Rockwell Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- Backerud, L.; Chai, G.; Tamminen, J. Solidification Characteristics of Aluminum Alloys. Foundry Alloys; American Foundrymen’s Society Inc.: Schaumburg, IL, USA, 1990; Volume 2, p. 266. [Google Scholar]
- Tillová, E.; Chalupová, M.; Hurtalová, L. Evolution of Phases in a Recycled Al-Si Cast Alloy during Solution Treatment. In Scanning Electron Microscopy; Kazmiruk, V., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Farahany, S.; Ourdjini, A.; Bakar, T.A.A.; Idris, M.H. A new approach to assess the effects of Sr and Bi interaction in ADC12 Al–Si die casting alloy. Thermochim. Acta 2014, 575, 179–187. [Google Scholar] [CrossRef]
- Djurdjevic, M.; Jiang, H.; Sokolowski, J. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Mater. Charact. 2001, 46, 31–38. [Google Scholar] [CrossRef]
- Farahany, S.; Ourdjini, A.; Idris, M.H.; Thai, L.T. Effect of bismuth on microstructure of unmodified and Sr-modified Al-7Si-0.4 Mg alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 1455–1464. [Google Scholar] [CrossRef]
- Shankar, S.; Riddle, Y.W.; Makhlouf, M.M. Nucleation mechanism of the eutectic phases in aluminum–silicon hypoeutectic alloys. Acta Mater. 2004, 52, 4447–4460. [Google Scholar] [CrossRef]
- Hansen, M.; Anderko, K.; Salzberg, H.W. Constitution of binary alloys. J. Electrochem. Soc. 1958, 105, 260. [Google Scholar] [CrossRef]
- Rečnik, S.; Bizjak, M.; Medved, J.; Cvahte, P.; Karpe, B.; Nagode, A. Mechanism of the Mg3Bi2 Phase Formation in Pb-Free Aluminum 6xxx Alloy with Bismuth Addition. Crystals 2021, 11, 424. [Google Scholar] [CrossRef]
- Biswas, P.; Prasadu, K.D.; Mondal, M.K. Effect of Bi addition on microstructure and mechanical properties of hypereutectic Al-17.6 Si alloy. Mater. Res. Express 2019, 6, 1165b9. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. (Ed.) Crystal Structures, 2nd ed.; Wiley: New York, NY, USA, 1963; Volume 1. [Google Scholar]
- Maeng, D.Y.; Lee, J.H.; Won, C.W.; Cho, S.S.; Chun, B.S. The effects of processing parameters on the microstructure and mechanical properties of modified B390 alloy in direct squeeze casting. J. Mater. Process. Technol. 2000, 105, 196–203. [Google Scholar] [CrossRef]
- Faltus, J.; Karlík, M.; Haušild, P. Influence of the chemical composition on the structure and properties of lead-free machinable AA 6023 (Al-Mg-Si-Sn-Bi) alloy. In Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13): TMS (The Minerals, Metals & Materials Society), Pittsburgh, PA, USA, 3–7 June 2012; pp. 1545–1550. [Google Scholar]
Alloying Elements (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Composition | Si | Fe | Cu | Mn | Mg | Zn | Ni | Ti | Al |
Standard | 16–18 | ≤1.3 | 4–5 | ≤0.5 | 0.45–0.65 | ≤1.5 | ≤1.5 | ≤1.5 | Bal. |
Received B390 | 18.3 | 0.9 | 4.8 | 0.3 | 0.5 | 0.5 | 0.06 | 0.027 | Bal. |
Alloy | Modifiers | Bi:P Ratio | |
---|---|---|---|
Bi(wt%) | P(wt%) | ||
B390-0.5Bi | 0.5 | 0 | 0.5:0 |
B390-1.0Bi | 1.0 | 0 | 1.0:0 |
B390-0.05P | 0 | 0.05 | 0:0.05 |
B390-0.1P | 0 | 0.1 | 0:0.1 |
B390-0.05P-0.5Bi | 0.5 | 0.05 | 0.5:0.05 (10:1) |
B390-0.1P-0.5Bi | 0.5 | 0.1 | 0.5:0.1 (5:1) |
B390-0.05P-1.0Bi | 1.0 | 0.05 | 1:0.05 (20:1) |
B390-0.1P-1.0Bi | 1.0 | 0.1 | 1:0.1 (10:1) |
No. | Face Milling Parameters | |||
---|---|---|---|---|
Spindle Speed (rpm) | Cutting Speed (m/min) | Depth of Cut (mm) | Feed Rate (mm/min) | |
1 | 2080 | 78 | 0.2 | 1020 |
2 | 2600 | 98 | 0.2 | 1020 |
Sample | Solidus Temperature (°C) | Liquidus Temperature (°C) | Solidification Range (°C) |
---|---|---|---|
B390 | 507 | 646.9 | 139.9 |
B390-0.5Bi | 515.7 | 642.9 | 127.2 |
B390-1.0Bi | 517.7 | 643.9 | 126.2 |
B390-0.05P | 507.4 | 652 | 144.6 |
B390-0.1P | 506.4 | 665.1 | 158.7 |
B390-0.05P-0.5Bi | 513.5 | 650.7 | 137.2 |
B390-0.1P-0.5Bi | 513.1 | 665.8 | 152.7 |
B390-0.05P-1.0Bi | 517.3 | 650.9 | 133.6 |
B390-0.1P-1.0Bi | 518.2 | 666.2 | 148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiandon, P.; Talangkun, S. Microstructural Modification Hardness and Surface Roughness of Hypereutectic Al-Si Alloys by a Combination of Bismuth and Phosphorus. Crystals 2022, 12, 1026. https://doi.org/10.3390/cryst12081026
Jiandon P, Talangkun S. Microstructural Modification Hardness and Surface Roughness of Hypereutectic Al-Si Alloys by a Combination of Bismuth and Phosphorus. Crystals. 2022; 12(8):1026. https://doi.org/10.3390/cryst12081026
Chicago/Turabian StyleJiandon, Porawit, and Sukangkana Talangkun. 2022. "Microstructural Modification Hardness and Surface Roughness of Hypereutectic Al-Si Alloys by a Combination of Bismuth and Phosphorus" Crystals 12, no. 8: 1026. https://doi.org/10.3390/cryst12081026
APA StyleJiandon, P., & Talangkun, S. (2022). Microstructural Modification Hardness and Surface Roughness of Hypereutectic Al-Si Alloys by a Combination of Bismuth and Phosphorus. Crystals, 12(8), 1026. https://doi.org/10.3390/cryst12081026