Intergranular Cracking in Mg-Gd-Y Alloy during Tension Test
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Initial Microstructure
3.2. Microstructure Evolution during Tension Test
3.3. Analysis of Crack Initiation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jin, L.; Mishra, R.K.; Sachdev, A.K. Texture modification during extrusion of some Mg alloys. Metall. Mater. Trans. A 2012, 43, 2148–2157. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, Z.; Jin, L.; Dong, J.; Chen, B.; Ding, W. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy. Mater. Des. 2014, 56, 966–974. [Google Scholar] [CrossRef]
- Sandlöbes, S.; Pei, Z.; Friák, M.; Zhu, L.F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater. 2014, 70, 92–104. [Google Scholar] [CrossRef]
- Luo, A.; Wu, W.; Mishra, R.; Jin, L.; Sachdev, A.; Ding, W. Microstructure and Mechanical Properties of Extruded Magnesium-Aluminum-Cerium Alloy Tubes. Metall. Mater. Trans. A 2010, 41, 2662–2674. [Google Scholar] [CrossRef]
- Prasad, N.S.; Kumar, N.N.; Narasimhan, R.; Suwas, S. Fracture behavior of magnesium alloys—Role of tensile twinning. Acta Mater. 2015, 94, 281–293. [Google Scholar] [CrossRef]
- Niknejad, S.; Esmaeili, S.; Zhou, N.Y. The role of double twinning on transgranular fracture in magnesium AZ61 in a localized stress field. Acta Mater. 2016, 102, 1–16. [Google Scholar] [CrossRef]
- Koike, J.; Fujiyama, N.; Ando, D.; Sutou, Y. Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scr. Mater. 2010, 63, 747–750. [Google Scholar] [CrossRef]
- Wang, F.; Dong, J.; Jiang, Y.; Ding, W. Cyclic deformation and fatigue of extruded Mg–Gd–Y magnesium alloy. Mater. Sci. Eng. A 2013, 561, 403–410. [Google Scholar] [CrossRef]
- Tian, J.; Deng, J.-F.; Chang, Y.; Shi, Q.-X.; Liang, W.; Ma, J. A study of unstable fracture of a magnesium alloy caused by uneven microstructure. Mater. Lett. 2022, 314, 131799. [Google Scholar] [CrossRef]
- Luo, A.; Deng, Y.; Guan, L.; Guo, X. Role of twinning and texture on fatigue resistance enhancement of Mg-6Gd-3Y-1Nd-0.5Zr alloys. Int. J. Fatigue 2021, 153, 106471. [Google Scholar] [CrossRef]
- Sun, J.; Jin, L.; Dong, J.; Ding, W.; Luo, A.A. Microscopic deformation compatibility during monotonic loading in a Mg-Gd-Y alloy. Mater. Charact. 2016, 119, 195–199. [Google Scholar] [CrossRef]
- Sun, J.; Jin, L.; Dong, J.; Wang, F.; Dong, S.; Ding, W.; Luo, A.A. Towards high ductility in magnesium alloys—The role of intergranular deformation. Int. J. Plast. 2019, 123, 121–132. [Google Scholar] [CrossRef]
- Luster, J.; Morris, M.A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships. Metall. Mater. Trans. A 1995, 26, 1745–1756. [Google Scholar] [CrossRef]
- Xin, R.L.; Liang, Y.C.; Ding, C.H.; Guo, C.F.; Wang, B.S.; Liu, Q. Geometrical compatibility factor analysis of paired extension twins in extruded Mg-3Al-1Zn alloys. Mater. Des. 2015, 86, 656–663. [Google Scholar] [CrossRef]
- Wang, F.; Liu, M.; Sun, J.; Feng, M.; Jin, L.; Dong, J.; Jiang, Y. Effects of initial {10–12} twins on cyclic deformation and fatigue of magnesium alloy at low strain amplitudes. Mater. Charact. 2019, 149, 118–123. [Google Scholar] [CrossRef]
- Liu, C.; Jin, L.; Dong, J.; Wang, F. The use of the fracture initiation parameter F1 to predict microcrack nucleation at grain boundaries in Mg-2%Gd alloy. Mater. Des. 2016, 111, 369–374. [Google Scholar] [CrossRef]
- Ashmawi, W.M.; Zikry, M.A. Single void morphological and grain-boundary effects on overall failure in F.C.C. polycrystalline systems. Mater. Sci. Eng. A 2003, 343, 126–142. [Google Scholar] [CrossRef]
- Ashmawi, W.M.; Zikry, M.A. Grain boundary effects and void porosity evolution. Mech. Mater. 2003, 35, 537–552. [Google Scholar] [CrossRef]
- Ma, A.; Roters, F.; Raabe, D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 2006, 54, 2169–2179. [Google Scholar] [CrossRef]
- Ma, A.; Roters, F.; Raabe, D. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling—Theory, experiments, and simulations. Acta Mater. 2006, 54, 2181–2194. [Google Scholar] [CrossRef]
Grain 1 | |||||
Basal {11−20} | Basal {1−210} | Basal {2−1−10} | Prismatic {11−20} | Prismatic {1−210} | Prismatic {2−1−10} |
0.486 | 0.330 | 0.156 | 0.220 | 0.088 | 0.132 |
Grain 2 | |||||
Basal {11−20} | Basal {1−210} | Basal {2−1−10} | Prismatic {11−20} | Prismatic {1−210} | Prismatic {2−1−10} |
0.161 | 0.125 | 0.035 | 0.483 | 0.284 | 0.199 |
Grain 3 | |||||
Basal {11−20} | Basal {1−210} | Basal {2−1−10} | Prismatic {11−20} | Prismatic {1−210} | Prismatic {2−1−10} |
0.020 | 0.019 | 0.002 | 0.467 | 0.388 | 0.079 |
Grain 4 | |||||
Basal {11−20} | Basal {1−210} | Basal {2−1−10} | Prismatic {11−20} | Prismatic {1−210} | Prismatic {2−1−10} |
0.216 | 0.266 | 0.050 | 0.290 | 0.450 | 0.160 |
m′ Value | Grain 3 | ||||||
---|---|---|---|---|---|---|---|
Basal {11−20} | Basal {1−210} | Basal {2−1−10} | Prismatic {11−20} | Prismatic {1−210} | Prismatic {2−1−10} | ||
Grain 1 | Basal {11−20} | 0.427 | 0.341 | 0.086 | 0.258 | 0.135 | 0.092 |
Basal {1−210} | 0.037 | 0.562 | 0.526 | 0.425 | 0.012 | 0.563 | |
Basal {2−1−10} | 0.391 | 0.221 | 0.612 | 0.167 | 0.123 | 0.655 | |
Prismatic {11−20} | 0.035 | 0.545 | 0.509 | 0.629 | 0.016 | 0.364 | |
Prismatic {1−210} | 0.013 | 0.011 | 0.003 | 0.376 | 0.605 | 0.027 | |
Prismatic {2−1−10} | 0.367 | 0.207 | 0.574 | 0.004 | 0.387 | 0.617 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, J.; Chen, Q.; Lu, L. Intergranular Cracking in Mg-Gd-Y Alloy during Tension Test. Crystals 2022, 12, 1040. https://doi.org/10.3390/cryst12081040
Liu J, Sun J, Chen Q, Lu L. Intergranular Cracking in Mg-Gd-Y Alloy during Tension Test. Crystals. 2022; 12(8):1040. https://doi.org/10.3390/cryst12081040
Chicago/Turabian StyleLiu, Jianhua, Jie Sun, Qingqiang Chen, and Laixiao Lu. 2022. "Intergranular Cracking in Mg-Gd-Y Alloy during Tension Test" Crystals 12, no. 8: 1040. https://doi.org/10.3390/cryst12081040
APA StyleLiu, J., Sun, J., Chen, Q., & Lu, L. (2022). Intergranular Cracking in Mg-Gd-Y Alloy during Tension Test. Crystals, 12(8), 1040. https://doi.org/10.3390/cryst12081040