Optical Properties of Yttria-Stabilized Zirconia Single-Crystals Doped with Terbium Oxide
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Crystals
2.2. Phase and Structure Characterization
3. Results and Discussion
3.1. Crystal-Phase Structure Analysis
3.2. X-ray Photoelectron Spectroscopy (XPS)
3.3. Absorption and Transmission Spectrum
3.4. Photoluminescence Excitation (PLE) Spectra
3.5. Photoluminescence Emission (PL) Spectra
3.6. Fluorescence Decay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Zhai, X.; Sun, M.; Ma, T.; Huang, Y.; Huang, B.; Du, Y.; Yan, C. When rare earth meets carbon nanodots: Mechanisms, applications and outlook. Chem. Soc. Rev. 2020, 49, 9220–9248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, J. Defect-related luminescent materials: Synthesis, emission properties and applications. Chem. Soc. Rev. 2012, 41, 7938–7961. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Han, W.; Zhao, M.; Su, J.; Li, Z.; Li, D.; Pi, L.; Zhou, X.; Zhai, T. Recent Advances in 2D Rare Earth Materials. Adv. Funct. Mater. 2020, 31, 1616–3028. [Google Scholar] [CrossRef]
- Brüninghoff, R.; Engelsen, D.; Fern, G.R.; Ireland, T.G.; Dhillon, R.; Silver, J. Nanosized (Y1−xGdx)2O2S: Tb3+ particles: Synthesis, photoluminescence, cathodoluminescence studies and a model for energy transfer in establishing the roles of Tb3+ and Gd3+. RSC Adv. 2016, 6, 42561–42571. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Sheng, Y.; Xu, C.; Dai, Y.; Xie, X.; Zou, H. Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3: Dy3+, Tb3+, Eu3+ phosphors. Phys. Chem. Chem. Phys. 2016, 18, 19807–19819. [Google Scholar] [CrossRef]
- Jung, J.-Y. Luminescent Color-Adjustable Europium and Terbium Co-Doped Strontium Molybdate Phosphors Synthesized at Room Temperature Applied to Flexible Composite for LED Filter. Crystals 2022, 12, 552. [Google Scholar] [CrossRef]
- Santos, S.N.C.; Paula, K.T.; Almeida, J.M.P.; Hernandes, A.C.; Mendonça, C.R. Effect of Tb3+/Yb3+ in the nonlinear refractive spectrum of CaLiBO glasses. J. Non-Cryst. Solids 2019, 524, 00223093. [Google Scholar] [CrossRef]
- Quang, V.X.; Van Do, P.; Ca, N.X.; Thanh, L.D.; Tuyen, V.P.; Tan, P.M.; Hoa, V.X.; Hien, N.T. Role of modifier ion radius in luminescence enhancement from 5D4 level of Tb3+ ion doped alkali-alumino-telluroborate glasses. J. Lumin. 2020, 221, 00222313. [Google Scholar] [CrossRef]
- Han, S.; Tao, Y.; Du, Y.; Yan, S.; Chen, Y.; Chen, D. Luminescence Behavior of GdVO4: Tb Nanocrystals in Silica Glass-Ceramics. Crystals 2020, 10, 396. [Google Scholar] [CrossRef]
- Wu, M.-y.; Qu, P.-f.; Wang, S.-y.; Guo, Z.; Cai, D.-f.; Li, B.-b. Investigation of multi-segmented Nd:YAG/NdYVO4 crystals and their laser performance end-pumped by a fiber coupled diode laser. Optik 2019, 179, 367–372. [Google Scholar] [CrossRef]
- Sriwongsa, K.; Limkitjaroenporn, P.; Hongtong, W.; Chaiphaksa, W.; Kaewkhao, J.; Kim, H.J. Non-Proportionality Electron Response and Energy Resolution of LaBr3:Ce and LuYAP:Ce Scintillating Crystals. J. Korean Phys. Soc. 2019, 75, 672–677. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Kimura, H.; Akatsuka, M.; Okada, G.; Kawano, N.; Fukuda, K.; Yanagida, T. Scintillation Characteristics of Pr:CaF2 Crystals for Charged-particle Detection. Sens. Mater. 2018, 30, 0914–4935. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.; Li, S.; Wu, W.; Pan, Y.; Wang, D.; Hong, X.; Cheng, Z.; Deng, W. Luminescence Properties of Ho2O3-Doped Y2O3 Stabilized ZrO2 Single Crystals. Crystals 2022, 12, 415. [Google Scholar] [CrossRef]
- Yan, X.; Fern, G.R.; Withnall, R.; Silver, J. Effects of the host lattice and doping concentration on the colour of Tb3+ cation emission in Y2O2S: Tb3+ and Gd2O2S: Tb3+ nanometer sized phosphor particles. Nanoscale 2013, 5, 8640–8646. [Google Scholar] [CrossRef]
- Wu, D.; Xiao, W.; Zhang, L.; Zhang, X.; Hao, Z.; Pan, G.-H.; Luo, Y.; Zhang, J. Simultaneously tuning the emission color and improving thermal stability via energy transfer in apatite-type phosphors. J. Mater. Chem. C 2017, 5, 11910–11919. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.-D.; Hou, W.-T.; Shi, Z.-L.; Zhao, H.-Y.; Xue, Y.-Y.; Shi, J.-J.; Liu, B.; Li, N. Research Progress of Rare-earth Doped Laser Crystals in Visible Region. J. Inorg. Mater. 2019, 34, 573–589. [Google Scholar]
- Lovisa, L.X.; Gomes, E.O.; Gracia, L.; Santiago, A.A.G.; Li, M.S.; Andrés, J.; Longo, E.; Bomio, M.R.D.; Motta, F.V. Integrated experimental and theoretical study on the phase transition and photoluminescent properties of ZrO2: x Tb3+ (x = 1, 2, 4 and 8 mol %). Mater. Res. Bull. 2022, 145, 00255408. [Google Scholar] [CrossRef]
- Metz, P.W.; Marzahl, D.-T.; Majid, A.; Kränkel, C.; Huber, G. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions. Laser Photonics Rev. 2016, 10, 335–344. [Google Scholar] [CrossRef]
- Kaszewski, J.; Witkowski, B.S.; Wachnicki, Ł.; Przybylińska, H.; Kozankiewicz, B.; Mijowska, E.; Godlewski, M. Reduction of Tb4+ ions in luminescent Y2O3: Tb nanorods prepared by microwave hydrothermal method. J. Rare Earths. 2016, 34, 774–781. [Google Scholar] [CrossRef]
- Gompa, T.P.; Ramanathan, A.; Rice, N.T.; La Pierre, H.S. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans. 2020, 49, 15945–15987. [Google Scholar] [CrossRef]
- López-Pacheco, G.; Padilla-Rosales, I.; López, R.; González, F. Revisiting the Charge Transfer State in Tetravalent Lanthanide Doped Oxides: Up to Date Phenomenological Description. ECS J. Solid State Sci. Technol. 2021, 10, 2162–8777. [Google Scholar] [CrossRef]
- Shyichuk, A.; Meinrath, G.; Lis, S. Pairs of Ln(III) dopant ions in crystalline solid luminophores: An ab initio computational study. J. Rare Earths 2016, 34, 820–827. [Google Scholar] [CrossRef]
- Kaszewski, J.; Borgstrom, E.; Witkowski, B.S.; Wachnicki, Ł.; Kiełbik, P.; Slonska, A.; Domino, M.A.; Narkiewicz, U.; Gajewski, Z.; Hochepied, J.-F.; et al. Terbium content affects the luminescence properties of ZrO2: Tb nanoparticles for mammary cancer imaging in mice. Opt. Mater. 2017, 74, 16–26. [Google Scholar] [CrossRef]
- Lovisa, L.X.; Araújo, V.D.; Tranquilin, R.L.; Longo, E.; Li, M.S.; Paskocimas, C.A.; Bomio, M.R.D.; Motta, F.V. White photoluminescence emission from ZrO2 co-doped with Eu3+, Tb3+ and Tm3+. J. Alloys Compd. 2016, 674, 245–251. [Google Scholar] [CrossRef]
- Meetei, S.D.; Singh, S.D.; Sudarsan, V. Polyol synthesis and characterizations of cubic ZrO2: Eu3+ nanocrystals. J. Alloys Compd. 2012, 514, 174–178. [Google Scholar] [CrossRef]
- Huang, H.-J.; Wang, M.-C. The phase formation and stability of tetragonal ZrO2 prepared in a silica bath. Ceram. Int. 2013, 39, 1729–1739. [Google Scholar] [CrossRef]
- Reddy, C.V.; Reddy, I.N.; Shim, J.; Kim, D.; Yoo, K. Synthesis and structural, optical, photocatalytic, and electrochemical properties of undoped and yttrium-doped tetragonal ZrO2 nanoparticles. Ceram. Int. 2018, 44, 12329–12339. [Google Scholar] [CrossRef]
- Vasanthavel, S.; Kannan, S. Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions. J. Phys. Chem. Solids 2018, 112, 100–105. [Google Scholar] [CrossRef]
- Xu, S.; Tan, X.; Liu, F.; Zhang, L.; Huang, Y.; Goodman, B.A.; Deng, W. Growth and optical properties of thulia-doped cubic yttria stabilized zirconia single crystals. Ceram. Int. 2019, 45, 15974–15979. [Google Scholar] [CrossRef]
- Wang, X.; Tan, X.; Xu, S.; Liu, F.; Goodman, B.A.; Deng, W. Preparation and up-conversion luminescence of Er-doped yttria stabilized zirconia single crystals. J. Lumin. 2020, 219, 00222313. [Google Scholar] [CrossRef]
- Wang, D.; Wu, W.; Tan, X.; Goodman, B.A.; Xu, S.; Deng, W. Upconversion Visible Light Emission in Yb/Pr Co-Doped Yttria-Stabilized Zirconia (YSZ) Single Crystals. Crystals 2021, 11, 1328. [Google Scholar] [CrossRef]
- Li, S.; Xu, S.; Wang, X.; Wang, D.; Goodman, B.A.; Hong, X.; Deng, W. Optical properties of gadolinia-doped cubic yttria stabilized zirconia single crystals. Ceram. Int. 2021, 47, 3346–3353. [Google Scholar] [CrossRef]
- Hong, X.; Xu, S.; Wang, X.; Wang, D.; Li, S.; Goodman, B.A.; Deng, W. Growth, structure and optical spectroscopic properties of dysprosia-doped cubic yttria stabilized zirconia (YSZ) single crystals. J. Lumin. 2021, 231, 00222313. [Google Scholar] [CrossRef]
- Vidya, Y.S.; Gurushantha, K.; Nagabhushana, H.; Sharma, S.C.; Anantharaju, K.S.; Shivakumara, C.; Suresh, D.; Nagaswarupa, H.P.; Prashantha, S.C.; Anilkumar, M.R. Phase transformation of ZrO2: Tb3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities. J. Alloys Compd. 2015, 622, 86–96. [Google Scholar] [CrossRef]
- Soares, M.R.N.; Nico, C.; Rodrigues, J.; Peres, M.; Soares, M.J.; Fernandes, A.J.S.; Costa, F.M.; Monteiro, T. Bright room-temperature green luminescence from YSZ: Tb3+. Mater. Lett. 2011, 65, 1979–1981. [Google Scholar] [CrossRef]
- Devanathan, R.; Weber, W.; Singhal, S.; Gale, J. Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion. 2006, 177, 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Phillippi, C.M.; Mazdiyasni, K.S. Infrared and Raman Spectra of Zirconia Polymorphs. J. Am. Ceram. Soc. 1971, 54, 254–258. [Google Scholar] [CrossRef]
- Tan, X.; Xu, S.; Zhang, L.; Liu, F.; Goodman, B.A.; Deng, W. Preparation and optical properties of Ho3+-doped YSZ single crystals. Appl. Phys. A 2018, 124, 1–7. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Lv, Y.; Fan, L.; Hu, Y.; He, M. A full-color emitting phosphor Ca9Ce(PO4)7: Mn2+, Tb3+: Efficient energy transfer, stable thermal stability and high quantum efficiency. Chem. Eng. J. 2017, 322, 314–327. [Google Scholar] [CrossRef]
- Ullah, B.; Lei, W.; Cao, Q.-S.; Zou, Z.-Y.; Lan, X.-K.; Wang, X.-H.; Lu, W.-Z.; Chen, X.M. Structure and Microwave Dielectric Behavior of A-Site-Doped Sr(1−1.5x)CexTiO3 Ceramics System. J. Am. Ceram. Soc. 2016, 99, 3286–3292. [Google Scholar] [CrossRef]
- Velu, S.; Suzuki, K.; Gopinath, C.S.; Yoshida, H.; Hattori, T. XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys. Chem. Chem. Phys. 2002, 4, 1990–1999. [Google Scholar] [CrossRef]
- Pan, G.-H.; Zhang, L.; Wu, H.; Qu, X.; Wu, H.; Hao, Z.; Zhang, L.; Zhang, X.; Zhang, J. On the luminescence of Ti4+ and Eu3+ in monoclinic ZrO2: High performance optical thermometry derived from energy transfer. J. Mater. Chem. C 2020, 8, 4518–4533. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Gu, S.; Wang, F.; Zhou, H. In-built Tb4+/Tb3+ redox centers in terbium-doped bismuth molybdate nanograss for enhanced photocatalytic activity. Catal. Sci. Technol. 2016, 6, 3510–3519. [Google Scholar] [CrossRef]
- Dorenbos, P. Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys.-Condens Matter 2003, 15, 8417–8434. [Google Scholar] [CrossRef]
- Zhang, P.; Su, Y.; Teng, F.; He, Y.; Zhao, C.; Zhang, G.; Xie, E. Luminescent enhancement in ZrO2: Tb3+, Gd3+ nanoparticles by active-shell modification. CrystEngComm 2014, 16, 1378–1383. [Google Scholar] [CrossRef]
- Jarucha, N.; Wantana, N.; Kaewkhao, J.; Sareein, T. Studying the properties of Gd2O3–WO3–CaO–SiO2–B2O3 glasses doped with Tb3+. Semicond. Phys. Quantum Electron. Optoelectron. 2020, 23, 276–281. [Google Scholar] [CrossRef]
- Sztolberg, D.; Brzostowski, B.; Dereń, P.J. Spectroscopic properties of LaAlO3 single-crystal doped with Tb3+ ions. Opt. Mater. 2018, 78, 292–294. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y. Synthesis, Structure, and Photoluminescence Properties of Ce3+-Doped Ca2YZr2Al3O12: A Novel Garnet Phosphor for White LEDs. J. Phys. Chem. C 2015, 119, 16208–16214. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, L.; Du, P.; Lis, S.; Rodríguez-Mendoza, U.R.; Lavín, V.; Martín, I.R.; Runowski, M. Pressure-triggered enormous redshift and enhanced emission in Ca2Gd8Si6O26: Ce3+ phosphors: Ultrasensitive, thermally-stable and ultrafast response pressure monitoring. Chem. Eng. J. 2022, 443, 13858947. [Google Scholar] [CrossRef]
- Boruc, Z.; Fetlinski, B.; Kaczkan, M.; Turczynski, S.; Pawlak, D.; Malinowski, M. Temperature and concentration quenching of Tb3+ emissions in Y4Al2O9 crystals. J. Alloys Compd. 2012, 532, 92–97. [Google Scholar] [CrossRef]
- Kesavulu, C.R.; Kim, H.J.; Lee, S.W.; Kaewkhao, J.; Kaewnuam, E.; Wantana, N. Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application. J. Alloys Compd. 2017, 704, 557–564. [Google Scholar] [CrossRef]
- Mo, Z.X.; Guo, H.W.; Liu, P.; Shen, Y.D.; Gao, D.N. Luminescence properties of magneto-optical glasses containing Tb3+ ions. J. Alloys Compd. 2016, 658, 967–972. [Google Scholar] [CrossRef]
Samples | Composition (mol%) | ||
---|---|---|---|
ZrO2 | Y2O3 | Tb4O7 | |
(ZrO2)92(Y2O3)8.00 | 92.00 | 8.000 | 0.000 |
(ZrO2)92(Y2O3)7.950(Tb4O7)0.050 | 92.00 | 7.950 | 0.050 |
(ZrO2)92(Y2O3)7.925(Tb4O7)0.075 | 92.00 | 7.925 | 0.075 |
(ZrO2)92(Y2O3)7.900(Tb4O7)0.100 | 92.00 | 7.900 | 0.100 |
(ZrO2)92(Y2O3)7.850(Tb4O7)0.150 | 92.00 | 7.850 | 0.150 |
(ZrO2)92(Y2O3)7.800(Tb4O7)0.200 | 92.00 | 7.800 | 0.200 |
(ZrO2)92(Y2O3)7.750(Tb4O7)0.250 | 92.00 | 7.750 | 0.250 |
Samples | Lattice Parameter (nm) | Cell Volume (nm3) | Before or after Annealing |
---|---|---|---|
(ZrO2)92(Y2O3)8.00 | 0.5139 | 0.1357 | Before annealing |
(ZrO2)92(Y2O3)7.950(Tb4O7)0.050 | 0.5137 | 0.1355 | Before annealing |
(ZrO2)92(Y2O3)7.925(Tb4O7)0.075 | 0.5138 | 0.1357 | Before annealing |
(ZrO2)92(Y2O3)7.900(Tb4O7)0.100 | 0.5138 | 0.1356 | Before annealing |
(ZrO2)92(Y2O3)7.850(Tb4O7)0.150 | 0.5138 | 0.1357 | Before annealing |
(ZrO2)92(Y2O3)7.800(Tb4O7)0.200 | 0.5138 | 0.1357 | Before annealing |
(ZrO2)92(Y2O3)7.750(Tb4O7)0.250 | 0.5137 | 0.1356 | Before annealing |
(ZrO2)92(Y2O3)7.800(Tb4O7)0.200 | 0.5155 | 0.1370 | After annealing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, Z.; Ta, S.; Cheng, Z.; Zhang, P.; Zeng, N.; Goodman, B.A.; Xu, S.; Deng, W. Optical Properties of Yttria-Stabilized Zirconia Single-Crystals Doped with Terbium Oxide. Crystals 2022, 12, 1081. https://doi.org/10.3390/cryst12081081
Wang Y, Zhu Z, Ta S, Cheng Z, Zhang P, Zeng N, Goodman BA, Xu S, Deng W. Optical Properties of Yttria-Stabilized Zirconia Single-Crystals Doped with Terbium Oxide. Crystals. 2022; 12(8):1081. https://doi.org/10.3390/cryst12081081
Chicago/Turabian StyleWang, Yazhao, Zhonghua Zhu, Shengdi Ta, Zeyu Cheng, Peng Zhang, Ninghan Zeng, Bernard Albert Goodman, Shoulei Xu, and Wen Deng. 2022. "Optical Properties of Yttria-Stabilized Zirconia Single-Crystals Doped with Terbium Oxide" Crystals 12, no. 8: 1081. https://doi.org/10.3390/cryst12081081
APA StyleWang, Y., Zhu, Z., Ta, S., Cheng, Z., Zhang, P., Zeng, N., Goodman, B. A., Xu, S., & Deng, W. (2022). Optical Properties of Yttria-Stabilized Zirconia Single-Crystals Doped with Terbium Oxide. Crystals, 12(8), 1081. https://doi.org/10.3390/cryst12081081