The Mechanism of PEDOT: PSS Films with Organic Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Details
2.3. Characteristic Measurements
3. Results
3.1. XPS Spectra of PEDOT: PSS with and without Organic Additives
3.2. Cross-Sectional SEM Micrograph of Bond-Breaking Reaction and Phase Separation
3.3. Contact Angle Analysis of PEDOT: PSS Doped with the Organic Additives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Naskar, P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Biswas, B.; Banerjee, A. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers. J. Mater. Chem. A 2021, 9, 1970–2017. [Google Scholar] [CrossRef]
- Maziz, A.; Özgür, E.; Bergaud, C.; Uzun, L. Progress in conducting polymers for biointerfacing and biorecognition applications. Sens. Actuators Rep. 2021, 3, 100035. [Google Scholar] [CrossRef]
- Luo, H.; Kaneti, Y.V.; Ai, Y.; Wu, Y.; Wei, F.; Fu, J.; Cheng, J.; Jing, C.; Yuliarto, B.; Eguchi, M.; et al. Nanoarchitectured porous conducting polymers: From controlled synthesis to advanced applications. Adv. Mater. 2021, 33, 2007318. [Google Scholar] [CrossRef]
- Terán-Alcocer, Á.; Bravo-Plascencia, F.; Cevallos-Morillo, C.; Palma-Cando, A. Electrochemical sensors based on conducting polymers for the aqueous detection of biologically relevant molecules. Nanomaterials 2021, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; Uversky, V.N.; Lundstrom, K.; Adadi, P.; Palù, G.; et al. Carbon-based nanomaterials: Promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano 2021, 15, 8069–8086. [Google Scholar] [CrossRef]
- Singla, S.; Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int. J. Hydrog. Energy 2021, 46, 33696–33717. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Zhou, L.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Cui, X.; Gong, Y.; Yi, D.; Zhang, Q.; Zhu, C.; Saleem, F.; Chen, B.; Lai, Z.; et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647. [Google Scholar] [CrossRef]
- Martínez, A.; Apip, C.; Meléndrez, M.F.; Domínguez, M.; Sánchez-Sanhueza, G.; Marzialetti, T.; Catalán, A. Dual antifungal activity against Candida albicans of copper metallic nanostructures and hierarchical copper oxide marigold-like nanostructures grown in situ in the culture medium. J. Appl. Microbiol. 2021, 130, 1883–1892. [Google Scholar] [CrossRef]
- Ahmed, H.B.; Emam, H.E. Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. J. Mol. Liq. 2021, 321, 114669. [Google Scholar] [CrossRef]
- Ekmekcioglu, M.; Erdogan, N.; Astarlioglu, A.T.; Yigen, S.; Aygun, G.; Ozyuzer, L.; Ozdemir, M. High transparent, low surface resistance ZTO/Ag/ZTO multilayer thin film electrodes on glass and polymer substrates. Vacuum 2021, 187, 110100. [Google Scholar] [CrossRef]
- Poisson, J.; Polgar, A.M.; Fromel, M.; Pester, C.W.; Hudson, Z.M. Preparation of Patterned and Multilayer Thin Films for Organic Electronics via Oxygen-Tolerant SI-PET-RAFT. Angew. Chem. Int. Ed. 2021, 60, 19988–19996. [Google Scholar] [CrossRef]
- Pandey, A.; Dalal, S.; Dutta, S.; Dixit, A. Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J. Mater. Sci. Mater. Electron. 2021, 32, 1341–1368. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly (3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311–316. [Google Scholar] [CrossRef]
- Ahmad, Z.; Azman, A.W.; Buys, Y.F.; Sarifuddin, N. Mechanisms for doped PEDOT: PSS electrical conductivity improvement. Mater. Adv. 2021, 2, 7118–7138. [Google Scholar]
- Alhashmi Alamer, F.; Badawi, N.M. Manufacturing Organic Environmentally Friendly Electrical Circuits Using the Composites’ Single-Walled Carbon Nanotubes and PEDOT: PSS. Energy Technol. 2022, 10, 2100830. [Google Scholar] [CrossRef]
- Liu, H.; Lee, J.; Kang, J. Improving the Sensitivity of an Organic Photodetector by Adding a Polar Solvent to the Hole-Transport Layer for Indirect X-ray Detection. J. Nanosci. Nanotechnol. 2021, 21, 2992–2997. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, J.; Xu, Y.; Li, Y.; Zhang, Q.; Hou, C.; Sun, H.; Wang, G.; Wang, H. Integrated Ionic-Additive Assisted Wet-Spinning of Highly Conductive and Stretchable PEDOT: PSS Fiber for Fibrous Organic Electrochemical Transistors. Adv. Electron. Mater. 2021, 7, 2100231. [Google Scholar] [CrossRef]
- Lien, S.Y.; Lin, P.C.; Chen, W.R.; Liu, C.H.; Sze, P.W.; Wang, N.F.; Huang, C.J. Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment. Crystals 2022, 12, 537. [Google Scholar] [CrossRef]
- Khasim, S.; Pasha, A.; Roy, A.S.; Parveen, A.; Badi, N. Effect of secondary doping using sorbitol on structure and transport properties of PEDOT–PSS thin films. J. Electron. Mater. 2017, 46, 4439–4447. [Google Scholar] [CrossRef]
- Ouyang, L.; Musumeci, C.; Jafari, M.J.; Ederth, T.; Inganas, O. Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films. ACS Appl. Mater. Interfaces 2015, 7, 19764–19773. [Google Scholar] [CrossRef] [PubMed]
- Du, F.P.; Cao, N.N.; Zhang, Y.F.; Fu, P.; Wu, Y.G.; Lin, Z.D.; Shi, R.; Amini, A.; Cheng, C. PEDOT: PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Sci. Rep. 2018, 8, 6441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengistie, D.A.; Ibrahem, M.A.; Wang, P.C.; Chu, C.W. Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl. Mater. Interfaces 2014, 6, 2292–2299. [Google Scholar] [CrossRef]
- Geng, Q.; Wang, Z.; Gao, Z.; Gao, T.; Li, Y.; Chen, L.; Li, M. Phase Separation to Improve the Conductivity and Work Function of the PEDOT: PSS Solution for Silicon Hybrid Solar Cells. J. Phys. Chem. C 2021, 125, 26379–26388. [Google Scholar] [CrossRef]
- Lang, U.; Müller, E.; Naujoks, N.; Dual, J. Microscopical Investigations of PEDOT:PSS Thin Films. Adv. Funct. Mater. 2009, 19, 1215–1220. [Google Scholar] [CrossRef]
- Mitraka, E.; Jafari, M.J.; Vagin, M.; Liu, X.; Fahlman, M.; Ederth, T.; Berggren, M.; Jonsson, M.P.; Crispin, X. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A 2017, 5, 4404–4412. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Dai, S.; Yang, J.; Shen, J.; Liao, M.; Xie, H.; Chen, C. Glycerol phosphate dimethacrylate: An alternative functional phosphate ester monomer to 10-methacryloyloxydecyl dihydrogen phosphate for enamel bonding. ACS Omega 2020, 5, 24826–24837. [Google Scholar] [CrossRef]
- Boeva, Z.A.; Milakin, K.A.; Pesonen, M.; Ozerin, A.N.; Sergeyev, V.G.; Lindfors, T. Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications. RSC Adv. 2014, 4, 46340–46350. [Google Scholar] [CrossRef]
- Lenz, A.; Kariis, H.; Pohl, A.; Persson, P.; Ojamäe, L. The electronic structure and reflectivity of PEDOT: PSS from density functional theory. Chem. Phys. 2011, 384, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, S.K.M.; Birgerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; Van Der Gon, A.D.; Salaneck, W.R.; Fahlman, M. The effects of solvents on the morphology and sheet resistance in poly (3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synth. Met. 2003, 139, 1–10. [Google Scholar] [CrossRef]
- Wong, K.W.; Yip, H.L.; Luo, Y.; Wong, K.Y.; Lau, W.M.; Low, K.H.; Chow, H.F.; Gao, Z.Q.; Yeung, W.L.; Chang, C.C. Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene): Poly (styrene sulphonate) with a self-assembly monolayer. Appl. Phys. Lett. 2002, 80, 2788–2790. [Google Scholar] [CrossRef]
- Rivnay, J.; Inal, S.; Collins, B.A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D.M.; Malliaras, G.G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 2016, 7, 11287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | PEDOT Area Ratio (%) | PSS Area Ratio (%) | Ratio (PEDOT/PSS) |
---|---|---|---|
PEDOT: PSS | 34 | 66 | 0.51 |
PEDOT: PSS–sorbitol | 41 | 59 | 0.69 |
PEDOT: PSS–maltitol | 49 | 51 | 0.96 |
PEDOT: PSS–sorbitol–maltitol | 42 | 58 | 0.72 |
Sample | Thickness (nm) |
---|---|
PEDOT: PSS | 497.3 |
PEDOT: PSS–sorbitol | 179.5 |
PEDOT: PSS–maltitol | 315.6 |
PEDOT: PSS–sorbitol–maltitol | 184.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lien, S.-Y.; Lin, P.-C.; Chen, W.-R.; Liu, C.-H.; Lee, K.-W.; Wang, N.-F.; Huang, C.-J. The Mechanism of PEDOT: PSS Films with Organic Additives. Crystals 2022, 12, 1109. https://doi.org/10.3390/cryst12081109
Lien S-Y, Lin P-C, Chen W-R, Liu C-H, Lee K-W, Wang N-F, Huang C-J. The Mechanism of PEDOT: PSS Films with Organic Additives. Crystals. 2022; 12(8):1109. https://doi.org/10.3390/cryst12081109
Chicago/Turabian StyleLien, Shui-Yang, Po-Chen Lin, Wen-Ray Chen, Chuan-Hsi Liu, Kuan-Wei Lee, Na-Fu Wang, and Chien-Jung Huang. 2022. "The Mechanism of PEDOT: PSS Films with Organic Additives" Crystals 12, no. 8: 1109. https://doi.org/10.3390/cryst12081109
APA StyleLien, S. -Y., Lin, P. -C., Chen, W. -R., Liu, C. -H., Lee, K. -W., Wang, N. -F., & Huang, C. -J. (2022). The Mechanism of PEDOT: PSS Films with Organic Additives. Crystals, 12(8), 1109. https://doi.org/10.3390/cryst12081109