Vacancy Defects in Bulk and Quasi-Bulk GaN Crystals
Abstract
:1. Introduction
2. Experiment Details
3. Overview of Positron Results in GaN Crystals
3.1. True-Bulk GaN Crystals
3.2. Quasi-Bulk GaN Crystals
4. Discussion
5. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Morkoç, H. Handbook of Nitride Semiconductors and Devices; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Iwinska, M.; Takekawa, N.; Ivanov, V.Y.U.; Amilusik, M.; Kruszewski, P.; Piotrzkowski, R.; Litwin-Staszewska, E.; Lucznik, B.; Fijalkowski, M.; Sochacki, T.; et al. Crystal growth of HVPE-GaN doped with germanium. J. Cryst. Growth 2017, 480, 102. [Google Scholar] [CrossRef]
- Fireman, M.N.; L’Heureux, G.; Wu, F.; Mates, T.; Young, E.C.; Speck, J.S. High germanium doping of GaN films by ammonia molecular beam epitaxy. J. Cryst. Growth 2018, 508, 19–23. [Google Scholar] [CrossRef]
- Heikman, S.; Keller, S.; Denbaars, S.; Mishra, U.K. Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2002, 81, 439–441. [Google Scholar] [CrossRef]
- Amilusik, M.; Zajac, M.; Sochacki, T.; Lucznik, B.; Fijalkowski, M.; Iwinska, M.; Wlodarczyk, D.; Somakumar, A.K.; Suchocki, A.; Bockowski, M. Carbon and Manganese in Semi-Insulating Bulk GaN Crystals. Materials 2022, 15, 2379. [Google Scholar] [CrossRef]
- Grzegory, I.; Leszczynski, M.; Krukowski, S.; Perlin, P.; Suski, T.; Porowski, S. The Application of High Pressure in Physics and Technology of III-V Nitrides. Acta Phys. Pol. A 2001, 100 (Suppl. 57), 57–109. [Google Scholar] [CrossRef]
- Lyons, J.L.; Van de Walle, C.G. Computationally predicted energies and properties of defects in GaN. NPJ Comput. Mater. 2017, 3, 12. [Google Scholar] [CrossRef]
- Geng, H.; Sunakawa, H.; Sumi, N.; Yamamoto, K.; Yamaguchi, A.A.; Usui, A. Growth and strain characterization of high quality GaN crystal by HVPE. J. Cryst. Growth 2012, 350, 44–49. [Google Scholar] [CrossRef]
- Bockowski, M.; Iwinska, M.; Amilusik, M.; Fijalkowski, M.; Łucznik, B.; Sochacki, T. Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semicond. Sci. Technol. 2016, 31, 093002. [Google Scholar] [CrossRef]
- Dwilińskia, R.; Doradzińskia, R.; Garczyńskia, J.; Sierzputowskia, L.P.; Puchalskia, A.; Kanbarab, Y.; Yagib, K.; Minakuchib, H.; Hayashib, H. Bulk ammonothermal GaN. J. Cryst. Growth 2009, 311, 3015. [Google Scholar] [CrossRef]
- Tuomisto, F.; Makkonen, I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev. Mod. Phys. 2013, 85, 1583–1631. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Imade, M.; Murakami, K.; Takazawa, H.; Imabayashi, H.; Todoroki, Y.; Kitamoto, K.; Maruyama, M.; Yoshimura, M.; Kitaoka, Y.; et al. Growth of bulk GaN crystal by Na flux method under various conditions. J. Cryst. Growth 2011, 350, 72–74. [Google Scholar] [CrossRef]
- Mikawa, Y.; Ishinabe, T.; Kawabata, S.; Mochizuki, T.; Kojima, A.; Kagamitani, Y.; Fujisawa, H. Ammonothermal growth of polar and non-polar bulk GaN crystal. Proc. SPIE 2015, 9363, 936302. [Google Scholar]
- Takino, J.; Sumi, T.; Okayama, Y.; Nobuoka, M.; Kitamoto, A.; Imanishi, M.; Yoshimura, M.; Mori, Y. Development of a 2-inch GaN wafer by using the oxide vapor phase epitaxy method. Jpn. J. Appl. Phys. 2019, 58, SC1043. [Google Scholar] [CrossRef]
- Nakamura, D.; Kimura, T.; Horibuchi, K. Halogen-free vapor phase epitaxy for high-rate growth of GaN bulk crystals. Appl. Phys. Express 2017, 10, 45504. [Google Scholar] [CrossRef] [Green Version]
- Saarinen, K.; Laine, T.; Kuisma, S.; Nissilä, J.; Hautojärvi, P.; Dobrzynski, L.; Baranowski, J.M.; Pakula, K.; Stepniewski, R.; Wojdak, M.; et al. Observation of Native Ga Vacancies in GaN by Positron Annihilation. Phys. Rev. Lett. 1997, 79, 3030–3033. [Google Scholar] [CrossRef]
- Rauch, C.; Makkonen, I.; Tuomisto, F. Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: A case study of InN. Phys. Rev. B 2011, 84, 125201. [Google Scholar] [CrossRef] [Green Version]
- Mäki, J.-M.; Makkonen, I.; Tuomisto, F.; Karjalainen, A.; Suihkonen, S.; Räisänen, J.; Chemekova, T.Y.; Makarov, Y.N. Identification of the VAl-ON complex in AlN single crystals. Phys. Rev. 2011, 84, 081204. [Google Scholar] [CrossRef] [Green Version]
- Uedono, A.; Tenjinbayashi, K.; Tsutsui, T.; Shimahara, Y.; Miyake, H.; Hiramatsu, K.; Oshima, N.; Suzuki, R.; Ishibashi, S. Native cation vacancies in Si-doped AlGaN studied by monoenergetic positron beams. J. Appl. Phys. 2012, 111, 013512. [Google Scholar] [CrossRef]
- Uedono, A.; Watanabe, T.; Kimura, S.; Zhang, Y.; Lozac’H, M.; Sang, L.; Ishibashi, S.; Oshima, N.; Suzuki, R.; Sumiya, M. Vacancy-type defects in InxGa1−xN grown on GaN templates probed using monoenergetic positron beams. J. Appl. Phys. 2013, 114, 184504. [Google Scholar] [CrossRef]
- Uedono, A.; Fujishima, T.; Piedra, D.; Yoshihara, N.; Ishibashi, S.; Sumiya, M.; Laboutin, O.; Johnson, W.; Palacios, T. Annealing behaviors of vacancy-type defects near interfaces between metal contacts and GaN probed using a monoenergetic positron beam. Appl. Phys. Lett. 2014, 105, 052108. [Google Scholar] [CrossRef] [Green Version]
- Uedono, A.; Malinverni, M.; Martin, D.; Okumura, H.; Ishibashi, S.; Grandjean, N. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam. J. Appl. Phys. 2016, 119, 245702. [Google Scholar] [CrossRef] [Green Version]
- Prozheeva, V.; Makkonen, I.; Cuscó, R.; Artús, L.; Dadgar, A.; Plazaola, F.; Tuomisto, F. Radiation-induced alloy rearrangement in InxGa1−xN. Appl. Phys. Lett. 2017, 110, 132104. [Google Scholar]
- Chichibu, S.F.; Uedono, A.; Kojima, K.; Ikeda, H.; Fujito, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J. Appl. Phys. 2018, 123, 161413. [Google Scholar] [CrossRef] [Green Version]
- Prozheev, I.; Mehnke, F.; Wernicke, T.; Kneissl, M.; Tuomisto, F. Electrical compensation and cation vacancies in Al rich Si-doped AlGaN. Appl. Phys. Lett. 2020, 117, 142103. [Google Scholar] [CrossRef]
- Hautakangas, S.; Makkonen, I.; Ranki, V.; Puska, M.J.; Saarinen, K.; Xu, X.; Look, D.C. Direct evidence of impurity decoration of Ga vacancies in GaN from positron annihilation spectroscopy. Phys. Rev. B 2006, 73, 193301. [Google Scholar] [CrossRef] [Green Version]
- Suihkonen, S.; Pimputkar, S.; Sintonen, S.; Tuomisto, F. Defects in Single Crystalline Ammonothermal Gallium Nitride. Adv. Electron. Mater. 2017, 3, 1600496. [Google Scholar] [CrossRef] [Green Version]
- Makkonen, I.; Snicker, A.; Puska, M.; Mäki, J.-M.; Tuomisto, F. Positrons as interface-sensitive probes of polar semiconductor heterostructures. Phys. Rev. B 2010, 82, 041307. [Google Scholar] [CrossRef] [Green Version]
- Vera, P.; Ilja, M.; Haoran, L.; Stacia, K.; Umesh, K.M.; Filip, T. Interfacial N Vacancies in GaN/(Al,Ga)N/GaN Heterostructures. Phys. Rev. Appl. 2020, 13, 044034. [Google Scholar]
- Tuomisto, F.; Ranki, V.; Look, D.C.; Farlow, G.C. Introduction and recovery of Ga and N sublattice defects in electron-irradiated GaN. Phys. Rev. B 2007, 76, 165207. [Google Scholar] [CrossRef] [Green Version]
- Saarinen, K.; Grzegory, I.; Lucznik, B.; Nissilä, J.; Hautojärvi, P.; Likonen, J.; Suski, T.; Porowski, S. The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals. Appl. Phys. Lett. 1999, 75, 2441–2443. [Google Scholar] [CrossRef]
- Tuomisto, F.; Prozheeva, V.; Makkonen, I.; Myers, T.H.; Bockowski, M.; Teisseyre, H. Amphoteric Be in GaN: Experimental Evidence for Switching between Substitutional and Interstitial Lattice Sites. Phys. Rev. Lett. 2017, 119, 196404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuomisto, F.; Saarinen, K.; Łucznik, B.; Grzegory, I.; Teisseyre, H.; Suski, T.; Porowski, S.; Hageman, P.R.; Likonen, J. Effect of growth polarity on vacancy defect and impurity incorporation in dislocation-free GaN. Appl. Phys. Lett. 2005, 86, 031915. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, F.; Saarinen, K.; Paskova, T.; Monemar, B.; Bockowski, M.; Suski, T. Thermal stability of in-grown vacancy defects in GaN grown by hydride vapor phase epitaxy. J. Appl. Phys. 2006, 99, 066105. [Google Scholar] [CrossRef] [Green Version]
- Pimputkar, S.; Kawabata, S.; Speck, J.; Nakamura, S. Surface morphology study of basic ammonothermal GaN grown on non-polar GaN seed crystals of varying surface orientations from m-plane to a-plane. J. Cryst. Growth 2013, 368, 67–71. [Google Scholar] [CrossRef]
- Ehrentraut, D.; Pakalapati, R.T.; Kamber, D.S.; Jiang, W.; Pocius, D.W.; Downey, B.C.; McLaurin, M.; D’Evelyn, M.P. High Quality, Low Cost Ammonothermal Bulk GaN Substrates. Jpn. J. Appl. Phys. 2013, 52, 08JA01. [Google Scholar] [CrossRef]
- Grabianska, K.; Kucharski, R.; Puchalski, A.; Sochacki, T.; Bockowski, M. Recent progress in basic ammonothermal GaN crystal growth. J. Cryst. Growth 2020, 547, 125804. [Google Scholar] [CrossRef]
- Tuomisto, F.; Mäki, J.-M.; Zajac, M. Vacancy defects in bulk ammonothermal GaN crystals. J. Cryst. Growth 2010, 312, 2620. [Google Scholar] [CrossRef]
- Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D. Vacancy–hydrogen complexes in ammonothermal GaN. J. Cryst. Growth 2014, 403, 114–118. [Google Scholar] [CrossRef]
- Heikkinen, T.; Pavlov, J.; Ceponis, T.; Gaubas, E.; Zając, M.; Tuomisto, F. Effect of Mn and Mg dopants on vacancy defect formation in ammonothermal GaN. J. Cryst. Growth 2020, 547, 125803. [Google Scholar] [CrossRef]
- Uedono, A.; Tsukada, Y.; Mikawa, Y.; Mochizuki, T.; Fujisawa, H.; Ikeda, H.; Kurihara, K.; Fujito, K.; Terada, S.; Ishibashi, S.; et al. Vacancies and electron trapping centers in acidic ammonothermal GaN probed by a monoenergetic positron beam. J. Cryst. Growth 2016, 448, 117–121. [Google Scholar] [CrossRef]
- Uedono, A.; Imanishi, M.; Imade, M.; Yoshimura, M.; Ishibashi, S.; Sumiya, M.; Mori, Y. Vacancy-type defects in bulk GaN grown by the Na-flux method probed using positron annihilation. J. Cryst. Growth 2017, 475, 261–265. [Google Scholar] [CrossRef]
- Tuomisto, F.; Paskova, T.; Kroger, R.; Figge, S.; Hommel, D.; Monemar, B.; Kersting, R. Defect distribution in a-plane GaN on Al2O3. Appl. Phys. Lett. 2007, 90, 121915. [Google Scholar] [CrossRef] [Green Version]
- Imade, M.; Murakami, K.; Matsuo, D.; Imabayashi, H.; Takazawa, H.; Todoroki, Y.; Kitamoto, A.; Maruyama, M.; Yoshimura, M.; Mori, Y. Centimeter-Sized Bulk GaN Single Crystals Grown by the Na-Flux Method with a NeckingTechnique. Cryst. Growth. Des. 2012, 12, 3799. [Google Scholar] [CrossRef]
- Imanishi, M.; Todoroki, Y.; Murakami, K.; Matsuo, D.; Imabayashi, H.; Takazawa, H.; Maruyama, M.; Imade, M.; Yoshimura, M.; Mori, Y. Dramatic reduction of dislocations on a GaN point seed crystal by coalescence of bunched steps during Na-flux growth. J. Cryst. Growth 2015, 427, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Kitamoto, A.; Takino, J.; Sumi, T.; Kamiyama, M.; Tsuno, S.; Ishibashi, K.; Gunji, Y.; Imanishi, M.; Okayama, Y.; Nobuoka, M.; et al. Effect of methane additive on GaN growth using the OVPE method. Jpn. J. Appl. Phys. 2019, 58, SC1021. [Google Scholar] [CrossRef]
- Oila, J.; Kivioja, J.; Ranki, V.; Saarinen, K. Ga vacancies as dominant intrinsic acceptors in GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 2003, 82, 3433. [Google Scholar] [CrossRef] [Green Version]
- Uedono, A.; Takino, J.; Sumi, T.; Okayama, Y.; Imanishi, M.; Ishibashi, S.; Mori, Y. Vacancy-type defects in bulk GaN grown by oxide vapor phase epitaxy probed using positron annihilation. J. Cryst. Growth 2021, 570, 126219. [Google Scholar] [CrossRef]
- Kimura, T.; Kataoka, K.; Uedono, A.; Amano, H.; Nakamura, D. Growth of high-quality GaN by halogen-free vapor phase epitaxy. Appl. Phys. Express 2020, 13, 085509. [Google Scholar] [CrossRef]
- Ishibashi, S.; Uedono, A. First-principles calculation of positron states and annihilation parameters for group-III nitrides. J. Phys. Conf. Ser. 2014, 505, 012010. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Usikov, A.; Helava, H.; Makarov, Y.N.; Prozheeva, V.; Makkonen, I.; Tuomisto, F.; Leach, J.H.; Udwary, K. Evaluation of the concentration of point defects in GaN. Sci. Rep. 2017, 7, 9727. [Google Scholar] [CrossRef]
- Uedono, A.; Sakurai, H.; Narita, T.; Sierakowski, K.; Bockowski, M.; Suda, J.; Ishibashi, S.; Chichibu, S.F.; Kachi, T. Effects of ultra-high-pressure annealing on characteristics of vacancies in Mg-implanted GaN studied using a monoenergetic positron beam. Sci. Rep. 2020, 10, 17349. [Google Scholar] [CrossRef]
- Sierakowski, K.; Jakiela, R.; Lucznik, B.; Kwiatkowski, P.; Iwinska, M.; Turek, M.; Sakurai, H.; Kachi, T.; Bockowski, M. High Pressure Processing of Ion Implanted GaN. Electronics 2020, 9, 1380. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuomisto, F. Vacancy Defects in Bulk and Quasi-Bulk GaN Crystals. Crystals 2022, 12, 1112. https://doi.org/10.3390/cryst12081112
Tuomisto F. Vacancy Defects in Bulk and Quasi-Bulk GaN Crystals. Crystals. 2022; 12(8):1112. https://doi.org/10.3390/cryst12081112
Chicago/Turabian StyleTuomisto, Filip. 2022. "Vacancy Defects in Bulk and Quasi-Bulk GaN Crystals" Crystals 12, no. 8: 1112. https://doi.org/10.3390/cryst12081112
APA StyleTuomisto, F. (2022). Vacancy Defects in Bulk and Quasi-Bulk GaN Crystals. Crystals, 12(8), 1112. https://doi.org/10.3390/cryst12081112