Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications
Abstract
:1. Introduction
2. Method and Methodology
2.1. Synthesis of 1-(3, 6-Dioxa Heptane) 3-Methyl Imidazolium Methane Sulfonate [DOMIMS]
2.2. Synthesis of TiO2 Nanoparticles
2.3. Sample Characterization
2.4. Photocatalytic H2 Measurements
3. Results and Discussion
4. Hydrogen Evolution Studies
5. Electrochemical Applications
5.1. Supercapacitance Energy Storage Applications
5.2. Electrochemical Sensing of Dopamine
6. Photocatalytic Dye Degradation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravishankar, T.; Nagaraju, G.; Dupont, J. Photocatalytic activity of Li-doped TiO2 nanoparticles: Synthesis via ionic liquid-assisted hydrothermal route. Mater. Res. Bull. 2016, 78, 103–111. [Google Scholar] [CrossRef]
- Smith, A. Textbook of Biochemistry with Clinical Correlations; Portland Press Limited: London, UK, 1983. [Google Scholar]
- Burbach, J.P.H. Genetic pathways in the developmental specification of hypothalamic neuropeptide and midbrain catecholamine systems. Eur. J. Pharmacol. 2000, 405, 55–62. [Google Scholar] [CrossRef]
- Mohen, B.; Saeed, M.; Marzieh, M. Inorg Application of electrochemical techniques at a nanostructure-based modified sensor for analyte quantitation. Met-Org. Nano-Metal Chem. 2016, 46, 1026–1032. [Google Scholar]
- Lahlou, S.; Lima, P.F.A.; Interaminense, L.F.L.; Duarte, G.P. Blunted central bromocriptine-induced tachycardia in conscious, malnourished rat. Pharmacol. Toxicol. 2003, 92, 189–194. [Google Scholar]
- Salzman, C.D.; Belova, M.A.; Paton, J.J. Blunted central bromocriptine-induced tachycardia in conscious, malnourished rats. Curr. Opin. Neurobiol. 2005, 15, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Wightman, R.M.; May, L.J.; Michael, A.C. Detection of dopamine dynamics in the brain. Anal. Chem. 1988, 60, 769A–793A. [Google Scholar] [CrossRef] [PubMed]
- Bhalodia, N.R.; Shukla, V.J. Antibacterial and antifungal activities from leaf extracts of Cassia fistula.: An ethnomedicinal plant. Adv. Pharm. Technol. Res. 2011, 2, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Hurum, D.C.; Agrios, A.G.; Crist, S.E.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Probing reaction mechanisms in mixed phase TiO2 by EPR. J. Electron Spectrosc. Relat. Phenom. 2006, 150, 155–163. [Google Scholar] [CrossRef]
- Eslami, H.; Moztarzadeh, F.; Kashi, T.S.J.; Khoshroo, K.; Tahriri, M. Hydrothermal synthesis and characterization of TiO2-derived nanotubes for biomedical applications, Synthesis and Reactivity in Inorganic. Met-Org. Nano-Metal Chem. 2015, 46, 1149–1156. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Cheng, B.; Le, Y.; Yu, J.; Hazard, J. Preparation and enhanced photocatalytic activity of Ag@ TiO2 core–shell nanocomposite nanowires. J. Hazard. Mater. 2010, 177, 971–977. [Google Scholar] [CrossRef] [PubMed]
- JCosterton, W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Patzke, G.R.; Zhou, Y.; Kontic, R.; Conrad, F. Angew. Oxide nanomaterials: Synthetic developments, mechanistic studies, and technological innovations. Chem. Int. Ed. 2011, 50, 826–859. [Google Scholar] [CrossRef] [PubMed]
- Borghols, W.J.H.; Lutzenkirchen-Hecht, D.; Haake, U.; Chan, W.; Lafont, U.; Kelder, E.M.; van Eck, E.R.H.; Kentgens, A.P.M.; Mulder, F.M.; Wagemaker, M. Lithium storage in amorphous TiO2 nanoparticles. J. Electrochem. Soc. 2010, 157, A582–A588. [Google Scholar] [CrossRef]
- Lafont, U.; Mountjoy, D.; Chadwick, A.V.; Kelder, E.M. In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. J. Phys. Chem. C 2009, 114, 1372–1378. [Google Scholar] [CrossRef]
- Li, B.; Ning, F.; He, Y.; Du, H.; Yang, Q.; Ma, J.; Kang, F.; Hsu, C. Synthesis and characterization of long life Li4Ti5O12/C composite using amorphous TiO2 nanoparticles. Int. J. Electrochem. Sci. 2011, 6, 3210–3223. [Google Scholar]
- Serga, V.; Burve, R.; Krumina, A.; Romanova, M.; Kotomin, E.A.; Popov, A.I. Extraction–pyrolytic method for TiO2 polymorphs production. Crystals 2021, 11, 431. [Google Scholar] [CrossRef]
- Raveendran, P.; Fu, J.; Wallen, S.L. Completely "green" synthesis and stabilization of metal nanoparticles. Am. Chem. Soc. 2003, 146, 13940–13941. [Google Scholar] [CrossRef] [PubMed]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. ‘Green’ Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae 2014, 1, 35–44. [Google Scholar] [CrossRef]
- Marr, P.C.; Marr, A.C. Ionic liquid gel materials: Applications in green and sustainable chemistry. Green Chem. 2016, 18, 105–128. [Google Scholar] [CrossRef]
- Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano-and microstructures preparation. Part 1: Properties and multifunctional role. Adv. Colloid Interface Sci. 2016, 230, 13–28. [Google Scholar] [CrossRef]
- Nagaraju, G.; Ebeling, G.; Goncalves, R.V.; Teixeira, S.R.; Weibel, D.E.; Dupont, J. Controlled growth of TiO2 nanomaterials in ionic liquids for photocatalytic H2 generation. J. Mol. Catal. A Chem. 2013, 378, 213–220. [Google Scholar] [CrossRef]
- Yong, Z. Recent Advances in Ionic Liquids for Synthesis of Inorganic Nanomaterials. Curr. Nanosci. 2005, 1, 35–42. [Google Scholar]
- Dupont, J. From molten salts to ionic liquids: A “nano” journey. Acc. Chem. Res. 2011, 44, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 2004, 339, 2693–2700. [Google Scholar] [CrossRef]
- Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B. Preparation and characterization of ZnO–TiO2 films obtained by sol-gel method. J. Non-Cryst. Solids 2011, 357, 2840–2845. [Google Scholar] [CrossRef]
- Singh, S.K.; Dhepe, P.L. Novel Synthesis of Immobilized Brønsted-Acidic Ionic Liquid: Application in Lignin Depolymerization. ChemistrySelect 2018, 3, 5461–5470. [Google Scholar] [CrossRef]
- Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Łapiński, M.; Kościelska, B.; Winiarski, A.; Sadowski WJ AP, P.A. XPS Study of superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-gel derived powders and thin films. Acta Phys. Pol. A 2014, 126, A107–A109. [Google Scholar] [CrossRef]
- González, R.; Monge, M.A.; Santiuste, J.E.M.; Pareja, R.; Chen, Y.; Kotomin, E.; Kukla, M.M.; Popov, A.I. Photoconversion of F-type centers in thermochemically reduced MgO single crystals. Phys. Rev. B 1999, 59, 4786. [Google Scholar] [CrossRef]
- Svecova, L.; Cremel, S.; Sirguey, C.; Simonnot, M.O.; Sardin, M.; Dossot, M.; Bion, F.M. Comparison between batch and column experiments to determine the surface charge properties of rutile TiO2 powder. J. Colloid Interface Sci. 2008, 325, 363–370. [Google Scholar] [CrossRef]
- Yu, J.C.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Sahoo, N.; Apparao, K. Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications. Appl. Phys. A 1996, 63, 195–202. [Google Scholar] [CrossRef]
- Serpone, N.; Lawless, D.; Khairutdinov, R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor. J. Phys. Chem. 1995, 45, 16646–16654. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, L.D.; Meng, G.W.; Li, G.H.; Zhang, X.Y.; Liang, C.H.; Chen, W.; Wang, S.X. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping. Appl. Phys. Lett. 2001, 78, 1125–1127. [Google Scholar] [CrossRef]
- Soundarya, T.L.; Ravikiran, Y.T.; Nirmala, B.; Nagaraju, G. Green synthesis of LiZnVO4 nanoparticles and its multiple applications towards electrochemical sensor, supercapacitor, humidity sensing, photoluminescence and antioxidant activities. J. Mater. Sci. Mater. Electron. 2022, 33, 10902–10918. [Google Scholar] [CrossRef]
- Soundarya, T.L.; Nirmala, B.; Alharthi, F.A.; Nagaraj, B.; Nagaraju, G. HRSL supported fabrication of LiZnVO4 nanoparticles: Applications to photoluminescence, dye elimination and biosensing. Mater. Sci. Eng. B 2022, 280, 115718. [Google Scholar] [CrossRef]
Sr. No | Ionic Liquid Used to Synthesise TiO2 Nanoparticles at 120 °C, 24 h | Amount of H2 Gas Produced at Time Interval of 2.5 h (μmol·g−1·h−1) | Ref |
---|---|---|---|
1. | N,N-dimethyl, ethyl amine methyl imidazolium hydrogen chloride. | 980 | [12] |
2. | 1-carboxymethyl, methyl imidazolium tetra fluoro borate [CMMIM] [BF4] | 550 | [33] |
3. | 1-2-(2-methoxyethyl)-3-methl imidazolium methane sulfonate. | 1250 | [34] |
4. | 1-2-(2-mthoxy ethyl)-3- methyl imidazolium tetrafluoroborate. | 1970 | [35] |
5. | 1-(3,6-diaxa heptane) 3-methyl immidazloium methane sulfonate | 2084 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soundarya, T.L.; Jayalakshmi, T.; Alsaiari, M.A.; Jalalah, M.; Abate, A.; Alharthi, F.A.; Ahmad, N.; Nagaraju, G. Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications. Crystals 2022, 12, 1133. https://doi.org/10.3390/cryst12081133
Soundarya TL, Jayalakshmi T, Alsaiari MA, Jalalah M, Abate A, Alharthi FA, Ahmad N, Nagaraju G. Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications. Crystals. 2022; 12(8):1133. https://doi.org/10.3390/cryst12081133
Chicago/Turabian StyleSoundarya, T. L., T. Jayalakshmi, Mabkhoot A. Alsaiari, Mohammed Jalalah, Antonio Abate, Fahad A. Alharthi, Naushad Ahmad, and G. Nagaraju. 2022. "Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications" Crystals 12, no. 8: 1133. https://doi.org/10.3390/cryst12081133
APA StyleSoundarya, T. L., Jayalakshmi, T., Alsaiari, M. A., Jalalah, M., Abate, A., Alharthi, F. A., Ahmad, N., & Nagaraju, G. (2022). Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications. Crystals, 12(8), 1133. https://doi.org/10.3390/cryst12081133