Demonstration of III-Nitride Red LEDs on Si Substrates via Strain-Relaxed Template by InGaN Decomposition Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, M.S.; Nakamura, S.; DenBaars, S.P. Review—Progress in High Performance III-Nitride Micro-Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2020, 9, 015012. [Google Scholar] [CrossRef]
- Lin, R.; Liu, X.; Zhou, G.; Qian, Z.; Cui, X.; Tian, P. InGaN Micro-LED Array Enabled Advanced Underwater Wireless Optical Communication. Adv. Opt. Mater. 2021, 9, 2002211. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Oh, J.; Ryu, J.; Park, Y.; Park, S.H.; Yoon, E. Highly polarized photoluminescence from c-plane InGaN/GaN multiple quantum wells on stripe-shaped cavity-engineered sapphire substrate. Sci. Rep. 2019, 9, 8282. [Google Scholar] [CrossRef] [PubMed]
- Pasayat, S.S.; Gupta, C.; Wong, M.S.; Ley, R.; Gordon, M.J.; Denbaars, S.P.; Nakamura, S.; Keller, S.; Mishra, U.K. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Appl. Phys. Express 2021, 14, 011004. [Google Scholar] [CrossRef]
- Gardner, N.F.; Chui, H.C.; Chen, E.I.; Krames, M.R.; Huang, J.-W.; Kish, F.A.; Stockman, S.A.; Kocot, C.P.; Tan, T.S.; Moll, N. 1.4x efficiency improvement in transparent-substrate AlGaInP light emitting diodes with thin (≤2000Å) active regions. Appl. Phys. Lett. 1999, 74, 2230–2232. [Google Scholar] [CrossRef]
- Krames, M.R.; Ochiai-Holcomb, M.; Hofler, G.E.; Carter-Coman, C.; Chen, E.I.; Tan, I.H.; Grillot, P.; Gardner, N.F.; Chui, H.C.; Huang, J.W.; et al. High-power truncate-inverted-pyramid AlGaInP/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 1999, 75, 2365–2367. [Google Scholar] [CrossRef]
- Bulashevich, K.A.; Karpov, S.Y. Impact of surface recombination on efficiency of III-nitride.pdf. Phys. Status Solidi-Rapid Res. Lett. 2016, 10, 480–484. [Google Scholar] [CrossRef]
- Oh, J.-T.; Lee, S.-Y.; Moon, Y.-T.; Moon, J.H.; Park, S.; Hong, K.Y.; Song, K.Y.; Oh, C.; Shim, J.-I.; Jeong, H.-H.; et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 2018, 26, 11194–11200. [Google Scholar] [CrossRef]
- Ley, R.T.; Smith, J.M.; Wong, M.S.; Margalith, T.; Nakamura, S.; Denbaars, S.P.; Gordon, M.J. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett. 2020, 116, 251104. [Google Scholar] [CrossRef]
- Oh, C.-H.; Shim, J.-I.; Shin, D.-S. Current- and temperature-dependent efficiency droops in InGaN-based blue and AlGaInP-based red light-emitting diodes. Jpn. J. Appl. Phys. 2019, 58, SCCC08. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, J.; Mo, C.; Zhang, J.; Wu, X.; Wu, Q.; Jiang, F. Realization of Highly Efficient InGaN Green LEDs with Sandwich-like Multiple Quantum Well Structure: Role of Enhanced Interwell Carrier Transport. ACS Photonics 2019, 6, 130–138. [Google Scholar] [CrossRef]
- Wong, M.S.; Chan, P.; Lim, N.; Zhang, H.; White, R.C.; Speck, J.S.; Denbaars, S.P.; Nakamura, S. Low Forward Voltage III-Nitride Red Micro-Light-Emitting Diodes on a Strain Relaxed Template with an InGaN Decomposition Layer. Crystals 2022, 12, 721. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Moses, P.G.; Miao, M.; Yan, Q.; Van De Walle, C.G. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J. Chem. Phys. 2011, 134, 084703. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, A.G.; Hashimoto, A.; Yamamoto, A. Indium nitride (InN): A review on growth, characterization, and properties. J. Appl. Phys. 2003, 94, 2779–2808. [Google Scholar] [CrossRef]
- Leszczynski, M.; Teisseyre, H.; Suski, T.; Grzegory, I.; Bockowski, M.; Jun, J.; Porowski, S.; Pakula, K.; Baranowski, J.M.; Foxon, C.T.; et al. Lattice parameters of gallium nitride. Appl. Phys. Lett. 1996, 69, 73–75. [Google Scholar] [CrossRef]
- Pereira, S.; Correia, M.R.; Pereira, E.; O’Donnell, K.P.; Trager-Cowan, C.; Sweeney, F.; Alves, E. Compositional pulling effects in InGaN/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study. Phys. Rev. B-Condens. Matter Mater. Phys. 2001, 64, 205311. [Google Scholar] [CrossRef]
- Ambacher, O.; Brandt, M.S.; Dimitrov, R.; Metzger, T.; Stutzmann, M.; Fischer, R.A.; Miehr, A.; Bergmaier, A.; Dollinger, G. Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1996, 14, 3532–3542. [Google Scholar] [CrossRef]
- Even, A.; Laval, G.; Ledoux, O.; Ferret, P.; Sotta, D.; Guiot, E.; Levy, F.; Robin, I.C.; Dussaigne, A. Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate. Appl. Phys. Lett. 2017, 110, 262103. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Gupta, C.; Acker-James, D.; Cohen, D.A.; Denbaars, S.P.; Nakamura, S.; Keller, S.; Mishra, U.K. Fabrication of relaxed InGaN pseudo-substrates composed of micron-sized pattern arrays with high fill factors using porous GaN. Semicond. Sci. Technol. 2019, 34, 115020. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Gupta, C.; Wong, M.S.; Wang, Y.; Nakamura, S.; Denbaars, S.P.; Keller, S.; Mishra, U.K. Growth of strain-relaxed InGaN on micrometer-sized patterned compliant GaN pseudo-substrates. Appl. Phys. Lett. 2020, 116, 111101. [Google Scholar] [CrossRef]
- Chan, P.; DenBaars, S.P.; Nakamura, S. Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers. Appl. Phys. Lett. 2021, 119, 131106. [Google Scholar] [CrossRef]
- Chan, P.; Rienzi, V.; Lim, N.; Chang, H.M.; Gordon, M.; DenBaars, S.P.; Nakamura, S. Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature. Appl. Phys. Express 2021, 14, 3–7. [Google Scholar] [CrossRef]
- Smalc-Koziorowska, J.; Grzanka, E.; Lachowski, A.; Hrytsak, R.; Grabowski, M.; Grzanka, S.; Kret, S.; Czernecki, R.; Turski, H.; Marona, L.; et al. Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells. ACS Appl. Mater. Interfaces 2021, 13, 7476–7484. [Google Scholar] [CrossRef]
- Alex, V.; Finkbeiner, S.; Weber, J. Temperature dependence of the indirect energy gap in crystalline silicon. J. Appl. Phys. 1996, 79, 6943–6946. [Google Scholar] [CrossRef]
- Okada, Y.; Tokumaru, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J. Appl. Phys. 1984, 56, 314–320. [Google Scholar] [CrossRef]
- Powell, R.C.; Lee, N.E.; Kim, Y.W.; Greene, J.E. Heteroepitaxial wurtzite and zinc-blende structure GaN grown by reactive-ion molecular-beam epitaxy: Growth kinetics, microstructure, and properties. J. Appl. Phys. 1993, 73, 189–204. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Mao, Q.; Wu, X.; Jiang, F. Effects of AlN interlayer on growth of GaN-based LED on patterned silicon substrate. CrystEngComm 2013, 15, 3372–3376. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, J.; Longquan, X.; Ding, J.; Wang, G.; Xiaoming, W.; Wang, X.; Chunlan, M.; Quan, Z.; Guo, X.; et al. Efficient InGaN-based yellow-light-emitting diodes. Photonics Res. 2019, 7, 144–148. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Gao, J.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red. Photonics Res. 2020, 8, 1671–1675. [Google Scholar] [CrossRef]
- Skromme, B.J.; Zhao, H.; Wang, D.; Kong, H.S.; Leonard, M.T.; Bulman, G.E.; Molnar, R.J. Strain determination in heteroepitaxial GaN. Appl. Phys. Lett. 1997, 71, 829–831. [Google Scholar] [CrossRef]
- Harutyunyan, V.S.; Aivazyan, A.P.; Weber, E.R.; Kim, Y.; Park, Y.; Subramanya, S.G. High-resolution X-ray diffraction strain–stress analysis of GaN/sapphire heterostructures. J. Phys. D. Appl. Phys. 2001, 34, A35–A39. [Google Scholar] [CrossRef]
- Smith, J.M.; Ley, R.; Wong, M.S.; Baek, Y.H.; Kang, J.H.; Kim, C.H.; Gordon, M.J.; Nakamura, S.; Speck, J.S.; Denbaars, S.P. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl. Phys. Lett. 2020, 116, 071102. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.; Akasaki, I. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells. Jpn. J. Appl. Phys. 1997, 36, L382–L385. [Google Scholar] [CrossRef]
- Hwang, J.; Hashimoto, R.; Saito, S.; Nunoue, S. Effects of local structure on optical properties in green-yellow InGaN/GaN quantum wells. Gall. Nitride Mater. Devices VIII 2013, 8625, 86251G. [Google Scholar] [CrossRef]
- Chichibu, S.; Azuhata, T.; Sota, T.; Nakamura, S. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett. 1996, 69, 4188–4190. [Google Scholar] [CrossRef]
- Iida, D.; Kirilenko, P.; Velazquez-Rizo, M.; Zhuang, Z.; Najmi, M.A.; Ohkawa, K. Demonstration of 621-nm-wavelength InGaN- based single-quantum-well LEDs with an external quantum efficiency of 4.3% at 10.1 A/cm2. AIP Adv. 2022, 12, 065125. [Google Scholar] [CrossRef]
- Hwang, J.I.; Hashimoto, R.; Saito, S.; Nunoue, S. Development of InGaN-based red LED grown on (0001) polar surface. Appl. Phys. Express 2014, 7, 071003. [Google Scholar] [CrossRef]
- Funato, M.; Ueda, M.; Kawakami, Y.; Narukawa, Y.; Kosugi, T.; Takahashi, M.; Mukai, T. Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {1122} GaN bulk substrates. Jpn. J. Appl. Phys. Part 2 Lett. 2006, 45, L659. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Zhang, H.; Yang, Y.; Wong, M.S.; Lynsky, C.; Iza, M.; Gordon, M.J.; Speck, J.S.; Nakamura, S.; et al. Red InGaN micro-light-emitting diodes (>620 nm) with a peak external quantum efficiency of 4.5% using an epitaxial tunnel junction contact. Appl. Phys. Lett. 2022, 120, 121102. [Google Scholar] [CrossRef]
- Geist, J.; Schaefer, A.R.; Song, J.F.; Wang, Y.H.; Zalewski, E.F. Accurate value for the absorption coefficient of silicon at 633 nm. J. Res. Natl. Inst. Stand. Technol. 1990, 95, 549–558. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhang, Z.M. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. Int. J. Thermophys. 2013, 34, 213–225. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, J.L.; Wang, G.X.; Mo, C.L.; Xu, L.Q.; Ding, J.; Quan, Z.J.; Wang, X.L.; Pan, S.; Zheng, C.D.; et al. Status of GaN-based green light-emitting diodes. Chin. Phys. B 2015, 24, 067804. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, J.R.; Chiu, C.H.; Kuo, H.C.; Li, Y.; Lu, T.C.; Wang, S.C. Temperature-Dependent Electroluminescence Efficiency in Blue InGaN-GaN Light-Emitting Diodes with Different Well Widths. IEEE Photonics Technol. Lett. 2010, 22, 236–238. [Google Scholar] [CrossRef]
- Iveland, J.; Martinelli, L.; Peretti, J.; Speck, J.S.; Weisbuch, C. Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 2013, 110, 177406. [Google Scholar] [CrossRef]
- White, R.C.; Li, H.; Khoury, M.; Lynsky, C.; Iza, M.; Keller, S.; Sotta, D.; Nakamura, S.; Denbaars, S.P. Ingan-based microled devices approaching 1% eqe with red 609 nm electroluminescence on semi-relaxed substrates. Crystals 2021, 11, 1364. [Google Scholar] [CrossRef]
- Dussaigne, A.; Le Maitre, P.; Haas, H.; Pillet, J.C.; Barbier, F.; Grenier, A.; Michit, N.; Jannaud, A.; Templier, R.; Vaufrey, D.; et al. Full InGaN red (625 nm) micro-LED (10 μm) demonstration on a relaxed pseudo-substrate. Appl. Phys. Express 2021, 14, 092011. [Google Scholar] [CrossRef]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained high external quantum efficiency in ultrasmall blue III-nitride micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [Google Scholar] [CrossRef]
- Manning, I.C.; Weng, X.; Acord, J.D.; Fanton, M.A.; Snyder, D.W.; Redwing, J.M. Tensile stress generation and dislocation reduction in Si-doped AlGaN films. J. Appl. Phys. 2009, 106, 023506. [Google Scholar] [CrossRef]
- Romanov, A.E.; Beltz, G.E.; Cantu, P.; Wu, F.; Keller, S.; Denbaars, S.P.; Speck, J.S. Cracking of III-nitride layers with strain gradients. Appl. Phys. Lett. 2006, 89, 23–25. [Google Scholar] [CrossRef]
- Cantu, P.; Wu, F.; Waltereit, P.; Keller, S.; Romanov, A.E.; Mishra, U.K.; DenBaars, S.P.; Speck, J.S. Si doping effect on strain reduction in compressively strained Al 0.49Ga0.51N thin films. Appl. Phys. Lett. 2003, 83, 674–676. [Google Scholar] [CrossRef]
- Cantu, P.; Wu, F.; Waltereit, P.; Keller, S.; Romanov, A.E.; DenBaars, S.P.; Speck, J.S. Role of inclined threading dislocations in stress relaxation in mismatched layers. J. Appl. Phys. 2005, 97, 103534. [Google Scholar] [CrossRef]
- Romanov, A.E.; Speck, J.S. Stress relaxation in mismatched layers due to threading dislocation inclination. Appl. Phys. Lett. 2003, 83, 2569–2571. [Google Scholar] [CrossRef]
- Czernecki, R.; Kret, S.; Kempisty, P.; Grzanka, E.; Plesiewicz, J.; Targowski, G.; Grzanka, S.; Bilska, M.; Smalc-Koziorowska, J.; Krukowski, S.; et al. Influence of hydrogen and TMIn on indium incorporation in MOVPE growth of InGaN layers. J. Cryst. Growth 2014, 402, 330–336. [Google Scholar] [CrossRef]
- Kumar, R.; Mukhopadhyay, P.; Bag, A.; Jana, S.K.; Chakraborty, A.; Das, S.; Mahata, M.K.; Biswas, D. Comparison of different pathways in metamorphic graded buffers on GaAs substrate: Indium incorporation with surface roughness. Appl. Surf. Sci. 2015, 324, 304–309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rienzi, V.; Smith, J.; Lim, N.; Chang, H.-M.; Chan, P.; Wong, M.S.; Gordon, M.J.; DenBaars, S.P.; Nakamura, S. Demonstration of III-Nitride Red LEDs on Si Substrates via Strain-Relaxed Template by InGaN Decomposition Layer. Crystals 2022, 12, 1144. https://doi.org/10.3390/cryst12081144
Rienzi V, Smith J, Lim N, Chang H-M, Chan P, Wong MS, Gordon MJ, DenBaars SP, Nakamura S. Demonstration of III-Nitride Red LEDs on Si Substrates via Strain-Relaxed Template by InGaN Decomposition Layer. Crystals. 2022; 12(8):1144. https://doi.org/10.3390/cryst12081144
Chicago/Turabian StyleRienzi, Vincent, Jordan Smith, Norleakvisoth Lim, Hsun-Ming Chang, Philip Chan, Matthew S. Wong, Michael J. Gordon, Steven P. DenBaars, and Shuji Nakamura. 2022. "Demonstration of III-Nitride Red LEDs on Si Substrates via Strain-Relaxed Template by InGaN Decomposition Layer" Crystals 12, no. 8: 1144. https://doi.org/10.3390/cryst12081144
APA StyleRienzi, V., Smith, J., Lim, N., Chang, H. -M., Chan, P., Wong, M. S., Gordon, M. J., DenBaars, S. P., & Nakamura, S. (2022). Demonstration of III-Nitride Red LEDs on Si Substrates via Strain-Relaxed Template by InGaN Decomposition Layer. Crystals, 12(8), 1144. https://doi.org/10.3390/cryst12081144