Structural Properties of Bacterial Cellulose Film Obtained on a Substrate Containing Sweet Potato Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymerization Degree and Crystallinity of Bacterial Cellulose
- -
- Crystallite size was calculated using the Scherrer equation (Equation (1)):
- -
- The crystallinity of bacterial cellulose by comparison of the areas under crystalline peaks and the amorphous curve was determined. Deconvolution of peaks was performed by the method proposed by Hindeleh and Johnson [23].
2.2. Microstructure of Bacterial Cellulose
2.3. Porosity Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Crystallinity and Degree of Polymerization of Bacterial Cellulose
3.2. Microstructure Identification Using SEM
3.3. Porosity of Bacterial Cellulose
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aleshina, L.A.; Gladysheva, E.K.; Budaeva, V.V.; Mironova, G.F.; Skiba, E.A.; Sakovich, G.V. X-ray Diffraction Data on the Bacterial Nanocellulose Synthesized by Komagataeibacter xylinus B-12429 and B-12431 Microbial Producers in Miscanthus- and Oat Hull-Derived Enzymatic Hydrolyzates. Crystallogr. Rep. 2022, 67, 391–397. [Google Scholar] [CrossRef]
- Skiba, E.A.; Gladysheva, E.K.; Budaeva, V.V.; Aleshina, L.A.; Sakovich, G.V. Yield and quality of bacterial cellulose from agricultural waste. Cellulose 2022, 29, 1543–1555. [Google Scholar] [CrossRef]
- Czaja, W.; Romanovicz, D.; Brown, R.M. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Yim, S.M.; Song, J.E.; Kim, H.R. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochem. 2017, 59, 26–36. [Google Scholar] [CrossRef]
- Stanisławska, A.; Staroszczyk, H.; Szkodo, M. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydr. Polym. 2020, 236, 116023. [Google Scholar] [CrossRef] [PubMed]
- Illa, M.P.; Sharma, C.S.; Khandelwal, M. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions. J. Mater. Sci. 2019, 54, 12024–12035. [Google Scholar] [CrossRef]
- Xu, S.; Xu, S.; Ge, X.; Tan, L.; Liu, T. Low-cost and highly efficient production of bacterial cellulose from sweet potato residues: Optimization, characterization, and application. Int. J. Biol. Macromol. 2022, 196, 172–179. [Google Scholar] [CrossRef]
- Azmi, S.N.N.S.; Fabli, S.N.N.F.M.; Aris, F.A.F.; Samsu, Z.A.; Asnawi, A.S.F.M.; Yusof, Y.M.; Ariffin, H.; Abdullah, S.S.S. Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production. Mater. Today Proc. 2021, 42, 101–106. [Google Scholar] [CrossRef]
- Wang, Q.; Nnanna, P.C.; Shen, F.; Huang, M.; Tian, D.; Hu, J.; Zeng, Y.; Yang, G.; Deng, S. Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop. Ind. Crop. Prod. 2021, 162, 113256. [Google Scholar] [CrossRef]
- Bednarczyk, D.; Betlej, I.; Boruszewski, P. Bacterial cellulose—Characteristics, synthesis, properties. Bull. Res. Dev. Cent. Wood-Based Panels Czarna Woda 2021, 3–4, 122–138. [Google Scholar] [CrossRef]
- Surma-Ślusarska, B.; Presler, S.; Danielewicz, D. Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text. East. Eur. 2008, 16, 108–111. [Google Scholar]
- Betlej, I.; Antczak, A.; Szadkowski, J.; Drożdżek, M.; Krajewski, K.; Radomski, A.; Zawadzki, J.; Borysiak, S. Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers 2022, 14, 2032. [Google Scholar] [CrossRef] [PubMed]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef]
- Rivas, B.; Moldes, A.B.; Domínguez, J.M.; Parajó, J.C. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Int. J. Food Microbiol. 2004, 97, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Hsu, W.-H.; Lee, F.-L.; Liao, C.-C. The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiol. 1996, 13, 407–415. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Betlej, I.; Salerno-Kochan, R.; Krajewski, K.J.; Zawadzki, J.; Boruszewski, P. The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by kombucha microorganisms. BioResources 2020, 15, 3125–3135. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Sawicka, B.; Krzysztofik, B.; Danilčenko, H.; Jariene, E. The Effects of Temperature on the Quality and Storage Stalibity of Sweet Potato (Ipomoea batatas L. [Lam]) Grown in Central Europe. Agronomy 2020, 10, 1665. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Sawicka, B.; Słupski, J.; Cebulak, T.; Paradowska, K. Nutrition value of the sweet potato (Ipomoea batatas (L.) Lam) cultivated in south—eastern Polish conditions. Int. J. Agron. Agric. Res. 2014, 4, 169–178. [Google Scholar]
- Bikova, T.; Treimanis, A. Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: A review. Carbohydr. Polym. 2002, 48, 23–28. [Google Scholar] [CrossRef]
- Antczak, A.; Radomski, A.; Drożdżek, M.; Zawadzki, J.; Zielenkiewicz, T. Thermal ageing of cellulose with natural and syn-thetic antioxidants under various conditions. Drewno 2016, 59, 139–152. [Google Scholar] [CrossRef]
- Waliszewska, H.; Waliszewska, B.; Zborowska, M.; Borysiak, S.; Antczak, A.; Czekała, W. Transformation of Miscanthus and Sorghum cellulose during methane fermentation. Cellulose 2018, 25, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Hindeleh, A.M.; Johnson, D.J. The resolution of multipeak data in fibre science. J. Phys. D Appl. Phys. 1971, 4, 259–263. [Google Scholar] [CrossRef]
- Barshan, S.; Rezazadeh-Bari, M.; Almasi, H.; Amiri, S. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int. J. Biol. Macromol. 2019, 136, 1188–1195. [Google Scholar] [CrossRef]
- Fan, X.; Gao, Y.; He, W.; Hu, H.; Tian, M.; Wang, K.; Pan, S. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 2016, 151, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.O.; Shoda, M. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 2005, 67, 45–51. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Huang, C.-L.; Chan, C.-F.; Lien, C.-Y.; Liao, W.C. Studies of sugar composition and starch morphology of baked sweet potatoes (Ipomoea batatas (L.) Lam). J. Food Sci. Technol. 2011, 50, 1193–1199. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J. 2015, 10, 1847–1861. [Google Scholar] [CrossRef]
- Mautner, A.; Bismarck, A. Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants. Carbohydr. Polym. 2021, 251, 117130. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Yang, F.; Shao, Y.; Zhang, X.; Dai, K. Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater. Sci. Eng. C 2017, 75, 1034–1041. [Google Scholar] [CrossRef]
- Tang, W.; Jia, S.; Jia, Y.; Yang, H. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol. 2010, 26, 125–131. [Google Scholar] [CrossRef]
- Molina-Ramírez, C.; Castro, C.; Zuluaga, R.; Gañán, P. Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks. J. Polym. Environ. 2018, 26, 830–837. [Google Scholar] [CrossRef]
- Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources. Front. Microbiol. 2017, 8, 2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cultivars | Total Sugars (Average) g kg−1 FM * |
---|---|
‘Purple’ | 4.90 |
‘Beauregard’ | 7.42 |
‘Carmen Rubin’ | 9.43 |
Parameter | BC-N | BC-SP |
---|---|---|
Crystallite size (D) of (100) plane (Ǻ) | 44.4 | 70.3 |
Crystallite size (D) of (010) plane (Ǻ) | 56.4 | 94.1 |
Crystallite size (D) of (110) plane (Ǻ) | 50.2 | 77.6 |
Relative crystallinity (%) | 65 | 27 |
Parameter | BC-N (SD) * | BC-SP (SD) * |
Molar mass: | ||
Number average Mn (kg/mol) | 266 a (29) | 336 b (11) |
Weight average Mw (kg/mol) | 791 a (14) | 920 a (55) |
Molar mass dispersity Đ | 3.01 a (0.41) | 2.75 a (0.28) |
Polymerization degree DPw | 4879 a (98) | 5680 b (383) |
Parameter | BC-N (SD) * | BC-SP (SD) * |
---|---|---|
Total volume of pore space | 0.43 a (0.09) | 0.18 b (0.08) |
Total porosity (%) | 3.27 a (0.11) | 1.45 b (0.22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betlej, I.; Rybak, K.; Nowacka, M.; Antczak, A.; Borysiak, S.; Krochmal-Marczak, B.; Lipska, K.; Boruszewski, P. Structural Properties of Bacterial Cellulose Film Obtained on a Substrate Containing Sweet Potato Waste. Crystals 2022, 12, 1191. https://doi.org/10.3390/cryst12091191
Betlej I, Rybak K, Nowacka M, Antczak A, Borysiak S, Krochmal-Marczak B, Lipska K, Boruszewski P. Structural Properties of Bacterial Cellulose Film Obtained on a Substrate Containing Sweet Potato Waste. Crystals. 2022; 12(9):1191. https://doi.org/10.3390/cryst12091191
Chicago/Turabian StyleBetlej, Izabela, Katarzyna Rybak, Małgorzata Nowacka, Andrzej Antczak, Sławomir Borysiak, Barbara Krochmal-Marczak, Karolina Lipska, and Piotr Boruszewski. 2022. "Structural Properties of Bacterial Cellulose Film Obtained on a Substrate Containing Sweet Potato Waste" Crystals 12, no. 9: 1191. https://doi.org/10.3390/cryst12091191
APA StyleBetlej, I., Rybak, K., Nowacka, M., Antczak, A., Borysiak, S., Krochmal-Marczak, B., Lipska, K., & Boruszewski, P. (2022). Structural Properties of Bacterial Cellulose Film Obtained on a Substrate Containing Sweet Potato Waste. Crystals, 12(9), 1191. https://doi.org/10.3390/cryst12091191