A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study
Abstract
:1. Introduction
2. Computational Methods
3. Results
3.1. Geometrical Structures
3.2. Electronic Structures of Gr@PtnHf4−n
3.3. Optical Properties of Gr@PtnHf4−n
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.D.; Yao, W.; Xiao, D.; Heinz, T.F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef]
- Mogulkoc, Y.; Modarresi, M.; Mogulkoc, A.; Ciftci, Y.O. Electronic and optical properties of bilayer blue phosphorus. Comput. Mater. Sci. 2016, 124, 23–29. [Google Scholar] [CrossRef]
- Xie, J.F.; Zhang, D.; Yan, X.Q.; Ren, M.X.; Zhao, X.; Liu, F.; Sun, R.X.; Li, X.K.; Li, Z.; Chen, S.Q.; et al. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 2019, 6, 035011. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, T.; Cheng, G.; Li, T.; Wang, S.; Wei, W.; Zhou, X.; Yu, W.; Sun, Y.; Wang, P.; et al. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe(2)/MoS(2) van der Waals Heterostructures. ACS Nano 2016, 10, 3852–3858. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Lee, G.-H.; Van Der Zande, A.M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T.F. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.H.; Lin, S.H.; Li, Z.J.; Zhang, Z.X.; Zhang, T.F.; Xie, C.; Mak, C.H.; Chai, Y.; Lau, S.P.; Luo, L.B.; et al. Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction. Adv. Funct. Mater. 2018, 28, 1705970. [Google Scholar] [CrossRef]
- Yu, J.H.; Lee, H.R.; Hong, S.S.; Kong, D.; Lee, H.-W.; Wang, H.; Xiong, F.; Wang, S.; Cui, Y. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 2015, 15, 1031–1035. [Google Scholar] [CrossRef]
- Ebnonnasir, A.; Narayanan, B.; Kodambaka, S.; Ciobanu, C.V. Tunable MoS2 bandgap in MoS2-graphene heterostructures. Appl. Phys. Lett. 2014, 105, 031603. [Google Scholar] [CrossRef]
- Ju, W.W.; Zhang, Y.; Li, T.W.; Wang, D.H.; Zhao, E.Q.; Hu, G.X.; Xu, Y.M.; Li, H.S. A type-II WSe2/HfSe2 van der Waals heterostructure with adjustable electronic and optical properties. Results Phys. 2021, 25, 104250. [Google Scholar] [CrossRef]
- Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K.G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K.-J.; Koppens, F.H. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46. [Google Scholar] [PubMed]
- Mitra, S.; Banerjee, S.; Datta, A.; Chakravorty, D. A brief review on graphene/inorganic nanostructure composites: Materials for the future. Indian J. Phys. 2016, 90, 1019–1032. [Google Scholar]
- Wu, D.; Wang, Y.E.; Zeng, L.H.; Jia, C.; Wu, E.P.; Xu, T.T.; Shi, Z.F.; Tian, Y.T.; Li, X.J.; Tsang, Y.H. Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector. ACS Photonics 2018, 5, 3820–3827. [Google Scholar]
- Wang, Y.; Li, L.; Yao, W.; Song, S.; Sun, J.T.; Pan, J.; Ren, X.; Li, C.; Okunishi, E.; Wang, Y.Q.; et al. Monolayer PtSe(2), a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Lett. 2015, 15, 4013–4018. [Google Scholar] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Kumar, N.; Sharma, M.; Sharma, J.; Ahluwalia, P. Study of magnetism in nano structures of graphene and functionalized graphene: A first principle study. Indian J. Phys. 2015, 89, 143–150. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, J.; Zhang, Z. Resonance enhanced absorption in a graphene monolayer using deep metal gratings. JOSA B 2015, 32, 1176–1185. [Google Scholar] [CrossRef]
- Lu, Y.; Song, J.; Yuan, J.; Zhang, L.; Wu, S.Q.Y.; Yu, W.; Zhao, M.; Qiu, C.-W.; Teng, J.; Loh, K.P. Highly efficient plasmon excitation in graphene-Bi2Te3 heterostructure. JOSA B 2016, 33, 1842–1846. [Google Scholar] [CrossRef]
- Amin, R.; Ma, Z.; Maiti, R.; Khan, S.; Khurgin, J.B.; Dalir, H.; Sorger, V.J. Attojoule-efficient graphene optical modulators. Appl. Opt. 2018, 57, D130–D140. [Google Scholar]
- Hajati, Y.; Zanbouri, Z.; Sabaeian, M. Optimizing encapsulated graphene in hexagonal boron nitride toward low propagation loss and enhanced field confinement. JOSA B 2019, 36, 1189–1199. [Google Scholar]
- Al-Ashi, N.E.; Taya, S.A.; El-Naggar, S.A.; Vigneswaran, D.; Amiri, I. Optical fiber surrounded by a graphene layer as an optical sensor. Opt. Quantum Electron. 2020, 52, 1–10. [Google Scholar]
- Ojaghi, S.; Golmohammadi, S.; Soofi, H. All-optical graphene-on-silicon slot waveguide modulator based on graphene’s Kerr effect. Appl. Opt. 2021, 60, 7945–7954. [Google Scholar]
- Daher, M.G.; Taya, S.A.; Colak, I.; Patel, S.K.; Olaimat, M.M.; Ramahi, O. Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics 2022, 15, e202200001. [Google Scholar] [PubMed]
- Yupapin, P.; Trabelsi, Y.; Vigneswaran, D.; Taya, S.A.; Daher, M.G.; Colak, I. Ultra-High-Sensitive Sensor Based on Surface Plasmon Resonance Structure Having Si and Graphene Layers for the Detection of Chikungunya Virus. Plasmonics 2022, 17, 1315–1321. [Google Scholar]
- Kashuba, A.B. Conductivity of defectless graphene. Phys. Rev. B 2008, 78, 085415. [Google Scholar]
- Tan, Y.-W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E.; Sarma, S.D.; Stormer, H.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803. [Google Scholar]
- Guan, Z.Y.; Ni, S.; Hu, S.L. Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction. Rsc. Adv. 2017, 7, 45393–45399. [Google Scholar]
- Long, M.S.; Liu, F.K.; Ding, F.; Wang, Y.; Ye, J.F.; Xie, R.Z.; Wang, H.; Xu, M.J.; Wang, F.; Tu, Y.B.; et al. Scalable fabrication of long-wave infrared PtSe2-G heterostructure array photodetectors. Appl. Phys. Lett. 2020, 117, 231104. [Google Scholar]
- Wang, L.; Li, J.J.; Fan, Q.; Huang, Z.F.; Lu, Y.C.; Xie, C.; Wu, C.Y.; Luo, L.B. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe2/Ge heterojunction. J. Mater. Chem. C 2019, 7, 5019–5027. [Google Scholar]
- Zeng, L.H.; Lin, S.H.; Lou, Z.H.; Yuan, H.Y.; Long, H.; Li, Y.Y.; Lu, W.; Lau, S.P.; Wu, D.; Tsang, Y.H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362. [Google Scholar]
- Zhang, X.; Gao, Y. 2D/2D h-BN/N-doped MoS2 Heterostructure Catalyst with Enhanced Peroxidase-like Performance for Visual Colorimetric Determination of H2O2. Chem. -Asian J. 2020, 15, 1315–1323. [Google Scholar] [PubMed]
- Wei, L.Y.; Lian, C.; Meng, S. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures. Phys. Rev. B 2017, 95, 184102. [Google Scholar]
- Yue, R.; Barton, A.T.; Zhu, H.; Azcatl, A.; Pena, L.F.; Wang, J.; Peng, X.; Lu, N.; Cheng, L.; Addou, R.; et al. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 2015, 9, 474–480. [Google Scholar] [PubMed]
- Yin, L.; Xu, K.; Wen, Y.; Wang, Z.X.; Huang, Y.; Wang, F.; Shifa, T.A.; Cheng, R.; Ma, H.; He, J. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 2016, 109, 213105. [Google Scholar] [CrossRef]
- Luo, Q.; Yin, S.; Sun, X.; Guo, G.; Dai, X. Interlayer coupling and external electric field controllable electronic structures and Schottky contact of HfSeX (X = S, Se)/graphene van der Waals heterostructures. Diam. Relat. Mater. 2022, 128, 109223. [Google Scholar]
- Zhao, Q.Y.; Guo, Y.H.; Si, K.Y.; Ren, Z.Y.; Bai, J.T.; Xu, X.L. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi B 2017, 254, 1700033. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [PubMed]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef]
- Eberlein, T.; Bangert, U.; Nair, R.; Jones, R.; Gass, M.; Bleloch, A.; Novoselov, K.; Geim, A.; Briddon, P. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406. [Google Scholar]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar]
- Wang, J.; Zhao, X.; Hu, G.; Ren, J.; Yuan, X. Manipulable Electronic and Optical Properties of Two-Dimensional MoSTe/MoGe2N4 van der Waals Heterostructures. Nanomaterials 2021, 11, 3338. [Google Scholar] [PubMed]
- Setiyawati, I.; Chiang, K.R.; Ho, H.M.; Tang, Y.H. Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chin. J. Phys. 2019, 62, 151–160. [Google Scholar]
- Liou, S.; Shie, C.-S.; Chen, C.; Breitwieser, R.; Pai, W.; Guo, G.; Chu, M.-W. π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss spectroscopy. Phys. Rev. B 2015, 91, 045418. [Google Scholar] [CrossRef]
- Du, A.; Sanvito, S.; Li, Z.; Wang, D.; Jiao, Y.; Liao, T.; Sun, Q.; Ng, Y.H.; Zhu, Z.; Amal, R.; et al. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 2012, 134, 4393–4397. [Google Scholar]
- Ning, F.; Wang, D.; Feng, Y.X.; Tang, L.M.; Zhang, Y.; Chen, K.Q. Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures. J. Mater. Chem. C 2017, 5, 9429–9438. [Google Scholar]
Materials | Gr@PtSe2 | Gr@Pt1Hf3 | Gr@Pt2Hf2 | Gr@Pt3Hf1 | Gr@HfSe2 |
---|---|---|---|---|---|
Lattice constants (Å) | a = 12.84 b = 7.41 | a = 12.79 b = 7.42 | a = 12.78 b = 7.42 | a = 12.77 b = 7.41 | a = 12.85 b = 7.43 |
dPt-Se (Å), dHf-Se (Å) | 2.52, - | 2.55, 2.67 | 2.54, 2.67 | 2.53, 2.63 | -, 2.70 |
Lattice mismatch ratios | 0.54% | 1.4% | 1.4% | 1.4% | 1.3% |
Materials | d (Å) | Acquired Charges in Graphene (e) |
---|---|---|
Gr@Pt1Hf3 | 3.42 | −0.20 |
Gr@Pt2Hf2 | 3.31 | −0.26 |
Gr@Pt3Hf1 | 3.27 | −0.28 |
Gr@PtSe2 | 3.46 | −0.32 |
Gr@HfSe2 | 3.41 | −0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Huang, H.; Peng, J.; Li, C.; Dong, H.; Kong, S.; Xie, Y.; Wu, R.; Wen, M.; Wu, F. A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study. Crystals 2022, 12, 1244. https://doi.org/10.3390/cryst12091244
Zhang J, Huang H, Peng J, Li C, Dong H, Kong S, Xie Y, Wu R, Wen M, Wu F. A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study. Crystals. 2022; 12(9):1244. https://doi.org/10.3390/cryst12091244
Chicago/Turabian StyleZhang, Jianzhi, Hongfu Huang, Junhao Peng, Chuyu Li, Huafeng Dong, Sifan Kong, Yiyuan Xie, Runqian Wu, Minru Wen, and Fugen Wu. 2022. "A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study" Crystals 12, no. 9: 1244. https://doi.org/10.3390/cryst12091244
APA StyleZhang, J., Huang, H., Peng, J., Li, C., Dong, H., Kong, S., Xie, Y., Wu, R., Wen, M., & Wu, F. (2022). A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study. Crystals, 12(9), 1244. https://doi.org/10.3390/cryst12091244