Gyrotactic Motile Microorganisms Impact on Pseudoplastic Nanofluid Flow over a Moving Riga Surface with Exponential Heat Flux
Abstract
:1. Introduction
2. Model Explanation of Mathematical Analysis
2.1. Flow Modeling
2.2. Similarity Transformation
2.3. Resulting Reduced Equations Subjected to the Boundary Conditions
2.4. Dimensionless Involving Parameters
2.5. Physical Engineering Interest
3. Numerical Scheme
4. Results and Discussion
5. Statistical Analysis
RSM
6. Main Remarks
- The greater magnitudes of the mixed convection parameter outcome in augmenting the behavior of the velocity profile.
- Both velocity components improve for a greater melting parameter.
- The temperature field of the nanoparticles upsurges for greater values of thermal Biot number.
- The concentration of nanoparticles escalates for a superior thermophoresis parameter value, activation energy parameter and mass Biot number while an inverse performance is found for the Prandtl number and Lewis number.
- The microorganism’s field diminishes for a greater Peclet number and bioconvection Lewis number.
- From the ANOVA analyzed, this model is significant.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Fluid velocity components | |
Directions of cortisone coordinates system | |
Magnetic parameter | |
Magnetic field | |
Heat capacitance of fluid | |
Heat capacitance of solid particles of fluid | |
Concentration of wall | |
Chemical reaction parameter | |
Microorganisms of wall | |
Wall temperature | |
Ambient temperature of fluid | |
Heat transfer coefficient | |
Ambient fluid concentration | |
Brownian motion | |
Microorganism diffusion coefficient | |
Buoyancy ratio parameter | |
Ambient microorganisms | |
Mean absorption coefficient | |
Thermophoresis coefficient | |
Chemical reaction parameter | |
Gravity due to acceleration | |
Bio-convection Rayleigh number | |
Radiation parameter | |
Exponential heat source coefficient | |
Thermal-based heat source coefficient | |
Prandtl number | |
Material constant of the fluid | |
Brownian motion parameter | |
Lewis number | |
Thermophoretic parameter | |
Mixed convection parameter | |
Bioconvective Lewis number | |
Fluid velocity | |
Hartmann number | |
Microorganism density | |
Microorganism | |
Concentration of nanoparticles | |
Microorganism difference variable | |
Fluid temperature | |
Nondimensional variable | |
Kinematic viscosity | |
Electric conductivity | |
Peclet number | |
Fluid density | |
Volume expansion coefficient, | |
Radiative heat flux | |
Magnetization for permanent magnets | |
Current density | |
Electrode width and magnets | |
Lorentz force volume density | |
Reynolds number | |
Exponential index |
References
- Al-Chlaihawi, K.K.; Alaydamee, H.H.; Faisal, A.E.; Al-Farhany, K.; Alomari, M.A. Newtonian and non-Newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: A review. Heat Transf. 2022, 51, 1725–1745. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Khan, S.A.; Khan, I.; Pasha, A.A.; Irshad, K. Cattaneo–Christov double diffusion and bioconvection in magnetohydrodynamic three-dimensional nanomaterials of non-Newtonian fluid containing microorganisms with variable thermal conductivity and thermal diffusivity. Waves Random Complex Media 2022, 1–20. [Google Scholar] [CrossRef]
- Rizwan, M.; Hassan, M.; Makinde, O.D.; Bhatti, M.M.; Marin, M. Rheological modeling of metallic oxide nanoparticles containing non-newtonian nanofluids and potential investigation of heat and mass flow characteristics. Nanomaterials 2022, 12, 1237. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Alqsair, U.F.; Guedri, K.; Jamshed, W.; Nasir NA, A.; Majdi, H.S.; Marzouki, R. Analysis of mixed convection of a power-law non-Newtonian nanofluid through a vented enclosure with rotating cylinder under magnetic field. Ann. Nucl. Energy 2022, 178, 109339. [Google Scholar] [CrossRef]
- Anwar, M.I.; Firdous, H.; Zubaidi, A.A.; Abbas, N.; Nadeem, S. Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet. Prog. React. Kinet. Mech. 2022, 47, 14686783211072712. [Google Scholar] [CrossRef]
- Waqas, H.; Yasmin, S.; Khan, S.U.; Qayyum, S.; Khan, M.I.; Abbasi, A.; Sun, T.C.; Malik, M.Y. Implication of Bio-convective Marangoni flow of non-Newtonian material towards an infinite disk subject to exponential space-based heat source. Int. J. Mod. Phys. B 2021, 35, 2150252. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29); Argonne National Lab (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Buongiorno, J. Convective Transport in Nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Imran, M.; Yasmin, S.; Waqas, H.; Khan, S.A.; Muhammad, T.; Alshammari, N.; Hamadneh, N.N.; Khan, I. Computational Analysis of Nanoparticle Shapes on Hybrid Nanofluid Flow Due to Flat Horizontal Plate via Solar Collector. Nanomaterials 2022, 12, 663. [Google Scholar]
- Ur Rasheed, H.; AL-Zubaidi, A.; Islam, S.; Saleem, S.; Khan, Z.; Khan, W. Effects of Joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of Jeffrey nanofluid over a vertically stretching cylinder. Coatings 2021, 11, 353. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.A.; Muhammad, T.; Yasmin, S. Convective heat transfer in magnetized flow of nanofluids between two rotating parallel disks. Int. J. Chem. React. Eng. 2022, 20, 411–422. [Google Scholar] [CrossRef]
- Waqas, H.; Yasmin, S.; Muhammad, T.; Imran, M. Flow and heat transfer of nanofluid over a permeable cylinder with nonlinear thermal radiation. J. Mater. Res. Technol. 2021, 14, 2579–2585. [Google Scholar] [CrossRef]
- Jamshed, W.; Eid, M.R.; Hussain, S.M.; Abderrahmane, A.; Safdar, R.; Younis, O.; Pasha, A.A. Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder. Int. Commun. Heat Mass Transf. 2022, 134, 106038. [Google Scholar] [CrossRef]
- Mabood, F.; Muhammad, T.; Nayak, M.K.; Waqas, H.; Makinde, O.D. EMHD flow of non-Newtonian nanofluids over thin needle with Robinson’s condition and Arrhenius pre-exponential factor law. Phys. Scr. 2020, 95, 115219. [Google Scholar] [CrossRef]
- Muhammad, T.; Alamri, S.Z.; Waqas, H.; Habib, D.; Ellahi, R. Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 2021, 143, 945–957. [Google Scholar] [CrossRef]
- Tembhare, S.P.; Barai, D.P.; Bhanvase, B.A. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review. Renew. Sustain. Energy Rev. 2022, 153, 111738. [Google Scholar] [CrossRef]
- Riehl, R.R.; Murshed, S.S. Performance evaluation of nanofluids in loop heat pipes and oscillating heat pipes. Int. J. Thermofluids 2022, 14, 100147. [Google Scholar] [CrossRef]
- Alqaed, S.; Mustafa, J.; Almehmadi, F.A.; Sharifpur, M. The effect of using non-Newtonian nanofluid on pressure drop and heat transfer in a capillary cooling system connected to a pouch lithium-ion battery connected to a solar system. J. Power Sources 2022, 539, 231540. [Google Scholar] [CrossRef]
- Bestman, A.R. Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Eng. Res. 1990, 14, 389–396. [Google Scholar]
- Hsiao, K.L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efciency by using Carreau-nanofuid with parameters control method. Energy 2017, 130, 486–499. [Google Scholar] [CrossRef]
- Hayat, T.; Aziz, A.; Alsaedi, A. Analysis of entropy production and activation energy in hydromagnetic rotating flow of nanoliquid with velocity slip and convective conditions. J. Therm. Anal. Calorim. 2021, 146, 2561–2576. [Google Scholar] [CrossRef]
- Awais, M.; Kumam, P.; Ali, A.; Shah, Z.; Alrabaiah, H. Impact of activation energy on hyperbolic tangent nanofluid with mixed convection rheology and entropy optimization. Alex. Eng. J. 2021, 60, 1123–1135. [Google Scholar] [CrossRef]
- Ali, B.; Pattnaik, P.K.; Naqvi, R.A.; Waqas, H.; Hussain, S. Brownian motion and thermophoresis effects on bioconvection of rotating Maxwell nanofluid over a Riga plate with Arrhenius activation energy and Cattaneo-Christov heat flux theory. Therm. Sci. Eng. Prog. 2021, 23, 100863. [Google Scholar] [CrossRef]
- Milani, G.; Milani, F. Relation between activation energy and induction in rubber sulfur vulcanization: An experimental study. J. Appl. Polym. Sci. 2021, 138, 50073. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Shahid, A.; Abbas, T.; Alamri, S.Z.; Ellahi, R. Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes 2021, 8, 328. [Google Scholar] [CrossRef]
- Kuznetsov, A.V. Bio-thermal convection induced by two different species of microorganisms. Int. Commun. Heat Mass Transf. 2011, 38, 548–553. [Google Scholar] [CrossRef]
- Kuznetsov, A.V. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 2010, 37, 1421–1425. [Google Scholar] [CrossRef]
- Alharbi, K.A.M.; Yasmin, S.; Farooq, S.; Waqas, H.; Alwetaishi, M.; Khan, S.U.; Al-Turjman, F.; Elattar, S.; Khan, M.I.; Galal, A.M. Thermal outcomes of Williamson pseudo-plastic nanofluid with microorganisms due to the heated Riga surface with bio-fuel applications. Waves Random Complex Media 2022, 1–24. [Google Scholar] [CrossRef]
- Imran, M.; Kamran, T.; Khan, S.A.; Muhammad, T.; Waqas, H. Physical attributes of bio-convection in nanofluid flow through a paraboloid of revolution on horizontal surface with motile microorganisms. Int. Commun. Heat Mass Transf. 2022, 133, 105947. [Google Scholar] [CrossRef]
- Alqarni, M.S.; Waqas, H.; Alghamdi, M.; Muhammad, T. Importance of bioconvection in 3D viscoelastic nanofluid flow due to exponentially stretching surface with nonlinear radiative heat transfer and variable thermal conductivity. J. Therm. Anal. Calorim. 2022, 147, 4805–4819. [Google Scholar] [CrossRef]
- Waqas, H.; Yasmin, S.; Althobaiti, N.; Bonyah, E.; Alshehri, A.; Shah, Z. Evaluating the Higher-Order Slip Consequence in Bioconvection Nanofluid Flow Configured by a Variable Thick Surface of Disk. J. Nanomater. 2022, 2022, 2766317. [Google Scholar] [CrossRef]
- Waqas, H.; Muhammad, T.; Hussain, S.; Yasmin, S.; Rasool, G. Consequences of Fourier’s and Fick’s laws in bioconvective couple stress nanofluid flow configured by an inclined stretchable cylinder. Int. J. Mod. Phys. B 2021, 35, 2150176. [Google Scholar] [CrossRef]
- Henda, M.B.; Waqas, H.; Hussain, M.; Khan, S.U.; Chammam, W.; Khan, S.A.; Tlili, I. Applications of activation energy along with thermal and exponential space-based heat source in bioconvection assessment of magnetized third grade nanofluid over stretched cylinder/sheet. Case Stud. Therm. Eng. 2021, 26, 101043. [Google Scholar] [CrossRef]
- Chu, Y.M.; Waqas, H.; Hussain, S.; Yasmein, S.; Khan, S.U.; Khan, M.I.; Kadry, S. Joule heating, activation energy and modified diffusion analysis for 3D slip flow of tangent hyperbolic nanofluid with gyrotactic microorganisms. Mod. Phys. Lett. B 2021, 35, 2150278. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.A.; Khan, S.U.; Khan, M.I.; Kadry, S.; Chu, Y.M. Falkner-Skan time-dependent bioconvrction flow of cross nanofluid with nonlinear thermal radiation, activation energy and melting process. Int. Commun. Heat Mass Transf. 2021, 120, 105028. [Google Scholar] [CrossRef]
- Abbasi, A.; Farooq, W.; Tag-ElDin, E.S.M.; Khan, S.U.; Khan, M.; Guedri, K.; Elattar, S.; Waqas, M.; Galal, A.M. Heat Transport Exploration for Hybrid Nanoparticle (Cu, Fe3O4)-Based Blood Flow via Tapered Complex Wavy Curved Channel with Slip Features. Micromachines 2022, 13, 1415. [Google Scholar] [CrossRef]
- Kiranakumar, H.V.; Thejas, R.; Naveen, C.S.; Khan, M.I.; Prasanna, G.D.; Reddy, S.; Oreijah, M.; Guedri, K.; Bafakeeh, O.T.; Jameel, M. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefinery 2022, in press. [Google Scholar] [CrossRef]
- Dunn, J.E.; Rajagopal, K.R. Fluids of differential type: Critical review and thermodynamic analysis. Int. J. Eng. Sci. 1995, 33, 689–729. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Sheikhholeslami, M.; Alsaedi, A. Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy. PLoS ONE 2015, 10, e0116603. [Google Scholar] [CrossRef]
- Khan, M.I.; Qayyum, S.; Kadry, S.; Khan, W.A.; Abbas, S.Z. Theoretical investigations of entropy optimization in electro-magneto nonlinear mixed convective second order slip flow. J. Magn. 2020, 25, 8–14. [Google Scholar] [CrossRef]
- Raees, A.; Raees-ul-Haq, M.; Xu, H.; Sun, Q. Tree-dimensional stagnation fow of a nanofuid containing both nanoparticles and microorganisms on a moving surface with anisotropic slip. Appl. Math. Model. 2016, 40, 4136–4150. [Google Scholar] [CrossRef]
- Ayub, M.; Abbas, T.; Bhatti, M.M. Inspiration of slip efects on electromagnetohydrodynamics (EMHD) nanofuid fow through a horizontal Riga plate. Eur. Phys. J. Plus 2016, 131, 193. [Google Scholar] [CrossRef]
- Alotaibi, H.; Althubiti, S.; Eid, M.R.; Mahny, K.L. Numerical treatment of MHD flow of Casson nanofluid via convectively heated non-linear extending surface with viscous dissipation and suction/injection effects. Comput. Mater. Contin. 2021, 66, 229–245. [Google Scholar] [CrossRef]
- Ullah, M.Z.; Alshomrani, A.S.; Alghamdi, M. Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer. Phys. A Stat. Mech. Its Appl. 2020, 550, 124024. [Google Scholar] [CrossRef]
- Muhammad, R.; Khan, M.I.; Jameel, M.; Khan, N.B. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput. Meth. Prog. Biomed. 2020, 188, 105298. [Google Scholar] [CrossRef]
- Kumar, K.G.; Rudraswamy, N.; Gireesha, B. Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction. Results Phys. 2017, 7, 3465–3471. [Google Scholar] [CrossRef]
- Eid, M.R. Thermal characteristics of 3D nanofluid flow over a convectively heated Riga surface in a Darcy–Forchheimer porous material with linear thermal radiation: An optimal analysis. Arab. J. Sci. Eng. 2020, 45, 9803–9814. [Google Scholar] [CrossRef]
Parameters | |||||||
---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 1.2129 | 1.4073 |
0.3 | 1.2916 | 1.4561 | |||||
0.7 | 1.4364 | 1.5476 | |||||
0.1 | 0.4 | 1.1607 | 1.3767 | ||||
0.8 | 1.1464 | 1.3696 | |||||
1.2 | 1.1322 | 1.3626 | |||||
0.8 | 1.1764 | 1.3845 | |||||
1.4 | 1.1806 | 1.3866 | |||||
2.0 | 1.1847 | 1.3887 | |||||
0.2 | 1.1763 | 1.3844 | |||||
0.4 | 1.1782 | 1.3854 | |||||
0.8 | 1.1830 | 1.3874 | |||||
0.2 | 1.1281 | 1.3347 | |||||
0.5 | 1.2934 | 1.5147 | |||||
1.0 | 1.4399 | 1.6750 | |||||
0.2 | 1.1680 | 1.3845 | |||||
0.4 | 1.1422 | 1.3612 | |||||
0.8 | 1.1233 | 1.3219 |
Parameters | |||||||
---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 0.3661 | 0.4620 |
0.3 | 0.3887 | 0.4788 | |||||
0.7 | 0.4382 | 0.5105 | |||||
0.1 | 0.4 | 0.3534 | 0.4536 | ||||
0.8 | 0.3541 | 0.4540 | |||||
1.2 | 0.3548 | 0.4545 | |||||
0.8 | 0.3526 | 0.4532 | |||||
1.4 | 0.3524 | 0.4531 | |||||
2.0 | 0.3522 | 0.4530 | |||||
0.2 | 0.3526 | 0.4532 | |||||
0.4 | 0.3525 | 0.4531 | |||||
0.8 | 0.3523 | 0.4530 | |||||
0.2 | 0.2266 | 0.2954 | |||||
0.6 | 0.7782 | 0.9568 | |||||
1.0 | 1.4427 | 1.6763 | |||||
0.3 | 0.2 | 0.3535 | 0.4322 | ||||
0.4 | 0.3499 | 0.3834 | |||||
0.8 | 0.3478 | 0.3645 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.3 | 2.0 | 0.3 | 0.4 | 0.1 | 0.0784 | 0.0805 |
0.3 | 0.0780 | 0.0803 | ||||||
0.7 | 0.778 | 0.0801 | ||||||
0.1 | 0.4 | 0.0788 | 0.0808 | |||||
0.8 | 0.0789 | 0.0809 | ||||||
1.2 | 0.0790 | 0.0811 | ||||||
0.1 | 0.0790 | 0.0809 | ||||||
0.5 | 0.0786 | 0.0806 | ||||||
0.9 | 0.0782 | 0.0804 | ||||||
2.5 | 0.0805 | 0.0820 | ||||||
3.0 | 0.0815 | 0.0828 | ||||||
3.5 | 0.0819 | 0.0836 | ||||||
2.0 | 0.2 | 0.0799 | 0.0805 | |||||
0.6 | 0.0798 | 0.0819 | ||||||
1.0 | 0.0710 | 0.0828 | ||||||
0.3 | 0.6 | 0.0779 | 0.0799 | |||||
0.9 | 0.0768 | 0.0789 | ||||||
1.3 | 0.0756 | 0.0778 | ||||||
0.3 | 0.2230 | 0.2355 | ||||||
0.6 | 0.3299 | 0.3605 | ||||||
0.9 | 0.3899 | 0.4344 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 0.3 | 2.0 | 0.2 | 2.0 | 0.3 | 0.2338 | 0.2418 |
0.3 | 0.2332 | 0.2416 | ||||||
0.7 | 0.2322 | 0.2408 | ||||||
0.1 | 0.4 | 0.2339 | 0.2418 | |||||
0.8 | 0.2340 | 0.2420 | ||||||
1.2 | 0.2342 | 0.2425 | ||||||
0.1 | 0.2820 | 0.2968 | ||||||
0.5 | 0.2585 | 0.2765 | ||||||
0.9 | 0.2378 | 0.2565 | ||||||
2.5 | 0.2399 | 0.2470 | ||||||
3.0 | 0.2443 | 0.2508 | ||||||
3.5 | 0.2476 | 0.2538 | ||||||
0.1 | 0.2249 | 0.2335 | ||||||
0.5 | 0.2393 | 0.2464 | ||||||
0.9 | 0.2408 | 0.2478 | ||||||
3.0 | 0.2444 | 0.2510 | ||||||
3.5 | 0.2479 | 0.2541 | ||||||
4.0 | 0.2507 | 0.2566 | ||||||
0.4 | 0.3187 | 0.3111 | ||||||
0.6 | 0.4111 | 0.4337 | ||||||
0.8 | 0.5048 | 0.5384 |
Parameters | ||||||
---|---|---|---|---|---|---|
0.1 | 0.1 | 0.1 | 2.0 | 0.3 | 0.2197 | 0.2305 |
0.3 | 0.2185 | 0.2299 | ||||
0.7 | 0.2168 | 0.2289 | ||||
0.1 | 0.4 | 0.2199 | 0.2306 | |||
0.8 | 0.2205 | 0.2308 | ||||
1.2 | 0.2208 | 0.2309 | ||||
0.4 | 0.2261 | 0.2354 | ||||
0.8 | 0.2310 | 0.2391 | ||||
1.2 | 0.2350 | 0.2425 | ||||
0.1 | 2.5 | 0.2293 | 0.2384 | |||
2.8 | 0.2323 | 0.2411 | ||||
3.1 | 0.2351 | 0.2435 | ||||
0.4 | 0.2743 | 0.3008 | ||||
0.6 | 0.3628 | 0.4016 | ||||
0.8 | 0.4316 | 0.4725 |
Ref. [46] | Ref. [47] | Present | ||||
---|---|---|---|---|---|---|
0.00 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
0.25 | 1.04906 | 0.19457 | 1.048811081 | 0.194563829 | 1.0488110815 | 0.1945638295 |
0.50 | 1.09324 | 0.46532 | 1.093095021 | 0.465204842 | 1.0930950219 | 0.4652048428 |
0.75 | 1.13458 | 0.79470 | 1.134485748 | 0.794618263 | 1.1344857489 | 0.7946182636 |
1.00 | 1.17378 | 1.17378 | 1.173720748 | 1.173720748 | 1.1737207488 | 1.1737207485 |
Parameters | Codes | Level | ||
---|---|---|---|---|
Low (−1) | Medium (0) | High (1) | ||
0.2 | 0.5 | 0.8 | ||
0.2 | 0.5 | 0.8 | ||
0.01 | 0.025 | 0.04 |
Runs | Coded Values | Real Values | Response | ||||
---|---|---|---|---|---|---|---|
1 | −1 | −1 | 0.1 | 0.600000 | 0.200000 | 7.00000 | −0.2789 |
2 | 1 | −1 | −1 | 0.400000 | 0.063641 | 4.50000 | −0.2752 |
3 | −1 | 1 | −1 | 0.400000 | 0.400000 | 0.29552 | −0.2148 |
4 | 1 | 1 | −1 | 0.400000 | 0.400000 | 4.50000 | −0.2745 |
5 | −1 | −1 | 1 | 0.400000 | 0.400000 | 4.50000 | −0.2745 |
6 | 1 | −1 | 1 | 0.736359 | 0.400000 | 4.50000 | −0.2736 |
7 | −1 | 1 | 1 | 0.400000 | 0.400000 | 8.70448 | −0.2809 |
8 | 1 | 1 | 1 | 0.200000 | 0.600000 | 7.00000 | −0.2789 |
9 | −1 | 0 | 0 | 0.600000 | 0.600000 | 2.00000 | −0.2623 |
10 | 1 | 0 | 0 | 0.200000 | 0.200000 | 7.00000 | −0.2800 |
11 | 0 | −1 | 0 | 0.400000 | 0.400000 | 4.50000 | −0.2745 |
12 | 0 | 1 | 0 | 0.200000 | 0.200000 | 2.00000 | −0.2641 |
13 | 0 | 0 | −1 | 0.600000 | 0.600000 | 7.00000 | −0.2779 |
14 | 0 | 0 | 1 | 0.200000 | 0.600000 | 2.00000 | −0.2633 |
15 | 0 | 0 | 0 | 0.600000 | 0.200000 | 7.00000 | −0.2789 |
16 | 0 | 0 | 0 | 0.400000 | 0.063641 | 4.50000 | −0.2752 |
17 | 0 | 0 | 0 | 0.400000 | 0.400000 | 0.29552 | −0.2148 |
18 | 0 | 0 | 0 | 0.400000 | 0.400000 | 4.50000 | −0.2745 |
19 | 0 | 0 | 0 | 0.400000 | 0.400000 | 4.50000 | −0.2745 |
20 | 0 | 0 | 0 | 0.736359 | 0.400000 | 4.50000 | −0.2736 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 9 | 0.003298 | 0.000366 | 6.37 | 0.004 |
Linear | 3 | 0.002225 | 0.000742 | 12.89 | 0.001 |
Nt | 1 | 0.000004 | 0.000004 | 0.06 | 0.804 |
Nb | 1 | 0.000003 | 0.000003 | 0.05 | 0.829 |
Pr | 1 | 0.002219 | 0.002219 | 38.54 | 0.000 |
Square | 3 | 0.001073 | 0.000358 | 6.21 | 0.012 |
Nt*Nt | 1 | 0.000023 | 0.000023 | 0.40 | 0.540 |
Nb*Nb | 1 | 0.000022 | 0.000022 | 0.39 | 0.546 |
Pr*Pr | 1 | 0.000959 | 0.000959 | 16.65 | 0.002 |
2-Way interaction | 3 | 0.000000 | 0.000000 | 0.00 | 1.000 |
Nt*Nb | 1 | 0.000000 | 0.000000 | 0.00 | 0.996 |
Nt*Pr | 1 | 0.000000 | 0.000000 | 0.00 | 0.996 |
Nb*Pr | 1 | 0.000000 | 0.000000 | 0.00 | 0.982 |
Error | 10 | 0.000576 | 0.000058 | ||
Lack-of-fit | 5 | 0.000576 | 0.000115 | * | * |
Pure error | 5 | 0.000000 | 0.000000 | ||
Total | 19 | 0.003873 | |||
R-sq | 85.14% | R-sq(adj) | 71.76% |
Term | Coef | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Constant | −0.27431 | 0.00309 | −88.65 | 0.000 | |
Nt | 0.00052 | 0.00205 | 0.25 | 0.804 | 1.00 |
Nb | 0.00046 | 0.00205 | 0.22 | 0.829 | 1.00 |
Pr | −0.01275 | 0.00205 | −6.21 | 0.000 | 1.00 |
Nt*Nt | −0.00127 | 0.00200 | −0.63 | 0.540 | 1.02 |
Nb*Nb | −0.00125 | 0.00200 | −0.62 | 0.546 | 1.02 |
Pr*Pr | 0.00816 | 0.00200 | 4.08 | 0.002 | 1.02 |
Nt*Nb | −0.00001 | 0.00268 | −0.00 | 0.996 | 1.00 |
Nt*Pr | 0.00001 | 0.00268 | 0.00 | 0.996 | 1.00 |
Nb*Pr | 0.00006 | 0.00268 | 0.02 | 0.982 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqas, H.; Oreijah, M.; Guedri, K.; Khan, S.U.; Yang, S.; Yasmin, S.; Khan, M.I.; Bafakeeh, O.T.; Tag-ElDin, E.S.M.; Galal, A.M. Gyrotactic Motile Microorganisms Impact on Pseudoplastic Nanofluid Flow over a Moving Riga Surface with Exponential Heat Flux. Crystals 2022, 12, 1308. https://doi.org/10.3390/cryst12091308
Waqas H, Oreijah M, Guedri K, Khan SU, Yang S, Yasmin S, Khan MI, Bafakeeh OT, Tag-ElDin ESM, Galal AM. Gyrotactic Motile Microorganisms Impact on Pseudoplastic Nanofluid Flow over a Moving Riga Surface with Exponential Heat Flux. Crystals. 2022; 12(9):1308. https://doi.org/10.3390/cryst12091308
Chicago/Turabian StyleWaqas, Hassan, Mowffaq Oreijah, Kamel Guedri, Sami Ullah Khan, Song Yang, Sumeira Yasmin, Muhammad Ijaz Khan, Omar T. Bafakeeh, El Sayed Mohamed Tag-ElDin, and Ahmed M. Galal. 2022. "Gyrotactic Motile Microorganisms Impact on Pseudoplastic Nanofluid Flow over a Moving Riga Surface with Exponential Heat Flux" Crystals 12, no. 9: 1308. https://doi.org/10.3390/cryst12091308
APA StyleWaqas, H., Oreijah, M., Guedri, K., Khan, S. U., Yang, S., Yasmin, S., Khan, M. I., Bafakeeh, O. T., Tag-ElDin, E. S. M., & Galal, A. M. (2022). Gyrotactic Motile Microorganisms Impact on Pseudoplastic Nanofluid Flow over a Moving Riga Surface with Exponential Heat Flux. Crystals, 12(9), 1308. https://doi.org/10.3390/cryst12091308