The Effect of AlN Content on the Properties of Al2O3-AlN Composite Ceramics Fabricated by Digital Light Processing
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Material
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Rheology and Stability of the Ceramic Suspensions
3.2. Curing Behavior of the Ceramic Suspensions
3.3. Relative Density and Microstructure of the Sintered Al2O3-AlN Ceramics
3.4. Thermal and Mechanical Properties of the Sintered Al2O3-AlN Ceramics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nieto, M.I.; Martínez, R.; Mazerolles, L.; Baudín, C. Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles. J. Eur. Ceram. Soc. 2004, 24, 2293–2301. [Google Scholar] [CrossRef]
- Ge, R.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Wu, G. Effect of Gd2O3 addition on mechanical, thermal and shielding properties of Al2O3 ceramics. J. Mater. Sci.-Mater. Electron. 2017, 28, 5898–5905. [Google Scholar] [CrossRef]
- Lin, K.; Nie, G.; Sheng, P.; Zhao, S.; Wu, S. Effects of doping Al-metal powder on thermal, mechanical and dielectric properties of AlN ceramics. Ceram. Int. 2022, 48, 36210–36217. [Google Scholar] [CrossRef]
- Lin, L.; Wu, H.; Ni, P.; Chen, Y.; Huang, Z.; Li, Y.; Lin, K.; Sheng, P.; Wu, S. Additive manufacturing of complex-shaped and high-performance aluminum nitride-based components for thermal management. Addit. Manuf. 2022, 52, 102671. [Google Scholar] [CrossRef]
- Van Roekeghem, A.; Vermeersch, B.; Carrete, J.; Mingo, N. Thermal Resistance of GaN/AlN Graded Interfaces. Phys. Rev. Appl. 2019, 11, 034036. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Gao, F.; Li, Q.; Cheng, X. AlON phase formation in hot-pressing sintering Al2O3/AlN composites and their oxidation behavior. J. Alloys Compd. 2016, 685, 309–315. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, B.; Koo, M.Y.; Ryu, H.J.; Hong, S.H. Fabrication of Al2O3/AlN micro-composites designed for tailored physical properties. Mater. Des. 2015, 86, 1–5. [Google Scholar] [CrossRef]
- Scheithauer, U.; Schwarzer, E.; Moritz, T.; Michaelis, A. Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM). J. Mater. Eng. Perform. 2017, 27, 14–20. [Google Scholar] [CrossRef]
- Sun, L.; Dong, P.; Zeng, Y.; Chen, J. Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology. Ceram. Int. 2021, 47, 26519–26527. [Google Scholar] [CrossRef]
- Ruiz-Morales, J.C.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Marín Rueda, J.R.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859. [Google Scholar] [CrossRef]
- Varghese, G.; Moral, M.; Castro-García, M.; López-López, J.J.; Marín-Rueda, J.R.; Yagüe-Alcaraz, V.; Hernández-Afonso, L.; Ruiz-Morales, J.C.; Canales-Vázquez, J. Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Boletín Soc. Española Cerámica Vidr. 2018, 57, 9–18. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Liu, Y.; Hu, K.; Lu, Z.; Liang, J. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography. Acta Metall. Sin. 2019, 33, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Zakeri, S.; Vippola, M.; Levänen, E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 2020, 35, 101177. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, C.; Wang, G.; He, R.; Ding, G.; Wang, M.; Dai, D.; Fang, D. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram. Int. 2019, 45, 203–208. [Google Scholar] [CrossRef]
- de Camargo, I.L.; Morais, M.M.; Fortulan, C.A.; Branciforti, M.C. A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization. Ceram. Int. 2021, 47, 11906–11921. [Google Scholar] [CrossRef]
- Wu, X.; Xu, C.; Zhang, Z. Preparation and optimization of Si3N4 ceramic slurry for low-cost LCD mask stereolithography. Ceram. Int. 2021, 47, 9400–9408. [Google Scholar] [CrossRef]
- Lin, L.; Wu, H.; Huang, Z.; Wu, S. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions. Mater. Chem. Phys. 2022, 275, 125243. [Google Scholar] [CrossRef]
- Zou, W.; Yang, P.; Lin, L.; Li, Y.; Wu, S. Improving cure performance of Si3N4 suspension with a high refractive index resin for stereolithography-based additive manufacturing. Ceram. Int. 2022, 48, 12569–12577. [Google Scholar] [CrossRef]
- Boey, F.; Cao, L.; Khor, K.A.; Tok, A. Phase reaction and sintering behavior of a Al2O3–20 wt%AlN–5 wt%Y2O3 system. Acta Mater. 2001, 49, 3117–3127. [Google Scholar] [CrossRef]
- Kim, Y.W.; Park, H.C.; Lee, Y.B.; Oh, K.D.; Stevens, R. Reaction sintering and microstructural development in the system Al2O3–AlN. J. Eur. Ceram. Soc. 2001, 21, 2383–2391. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Q.; Peng, H.; Tian, X.; Chen, Z.; Peng, Y. Effect of AlN content on the properties and microstructure of pressureless-sintered Al2O3-AlN composites. J. Ceram. Process. Res. 2018, 19, 224–230. [Google Scholar]
- Zhou, M.; Liu, W.; Wu, H.; Song, X.; Chen, Y.; Cheng, L.; He, F.; Chen, S.; Wu, S. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes. Ceram. Int. 2016, 42, 11598–11602. [Google Scholar] [CrossRef]
- Li, K.; Zhao, Z. The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceram. Int. 2017, 43, 4761–4767. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Tian, Z.; Li, Y.; Zhao, Z.; Huang, M.; Deng, X.; Xie, Z.; Wu, S. 3D printing of dense structural ceramic microcomponents with low cost: Tailoring the sintering kinetics and the microstructure evolution. J. Am. Ceram. Soc. 2019, 102, 2257–2262. [Google Scholar] [CrossRef]
- Nie, G.; Li, Y.; Sheng, P.; Tian, Z.; Liu, W.; Wu, H.; Bao, Y.; Wu, S. Fabrication of Al2O3/AlN composite ceramics with enhanced performance via a heterogeneous precipitation coating process. Ceram. Int. 2020, 46, 21156–21165. [Google Scholar] [CrossRef]
- Liu, C.; Guo, W.-M.; Sun, S.-K.; Zou, J.; Wu, S.-H.; Lin, H.-T. Texture, microstructures, and mechanical properties of AlN-based ceramics with Si3N4-Y2O3 additives. J. Am. Ceram. Soc. 2017, 100, 3380–3384. [Google Scholar] [CrossRef]
- Leitner, J.; Voňka, P.; Sedmidubský, D.; Svoboda, P. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 2010, 497, 7–13. [Google Scholar] [CrossRef]
- Eric, S.; Thierry, C.; Philippe, B.; Marie-Francoise, D. Densification and thermal conductivity of low-sintering-temperature AlN materials. J. Eur. Ceram. Soc. 1990, 6, 23–29. [Google Scholar]
- Xu, X.; Zhou, S.; Wu, J.; Liu, S.; Ma, S.; Cheng, T. Study of alumina ceramic parts fabricated via DLP stereolithography using powders with different sizes and morphologies. Int. J. Appl. Ceram. Technol. 2022. [Google Scholar] [CrossRef]
- Gentry, S.P.; Halloran, J.W. Depth and width of cured lines in photopolymerizable ceramic suspensions. J. Eur. Ceram. Soc. 2013, 33, 1981–1988. [Google Scholar] [CrossRef]
- Huang, S.; Li, Y.; Yang, P.; Sheng, P.; Ou, J.; Ning, T.; Wu, S. Cure behaviour and mechanical properties of Si3N4 ceramics with bimodal particle size distribution prepared using digital light processing. Ceram. Int. 2022. [Google Scholar] [CrossRef]
- Kim, Y.W.; Oh, Y.W.; Yoon, S.Y.; Stevens, R.; Park, H.C. Thermal diffusivity of reaction-sintered AlON/Al2O3 particulate composites. Ceram. Int. 2008, 34, 1849–1855. [Google Scholar] [CrossRef]
- Lee, H.M.; Bharathi, K.; Kim, D.K. Processing and Characterization of Aluminum Nitride Ceramics for High Thermal Conductivity. Adv. Eng. Mater. 2014, 16, 655–669. [Google Scholar] [CrossRef]
- Shi, X.L.; Xu, F.M.; Zhang, Z.J.; Dong, Y.L.; Tan, Y.; Wang, L.; Yang, J.M. Mechanical properties of hot-pressed Al2O3/SiC composites. Mater. Sci. Eng. A 2010, 527, 4646–4649. [Google Scholar] [CrossRef]
- Hoshide, T.; Hiramatsu, H. Characterization of integrated data on inherent flaws in engineering ceramics. Mater. Sci. Res. Int. 1999, 5, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Hu, P.; Zhao, X.; Wang, Z.; Zhang, C.; Wang, Y. Modelling and experimental investigation of pore-like flaw-strength response in structural ceramics. Ceram. Int. 2020, 46, 14431–14438. [Google Scholar] [CrossRef]
- Luo, J.; Stevens, R. The Role of Residual Stress on the Mechanical Properties of Al2O3 -5vol% SiC Nano-Composites. J. Eur. Ceram. Soc. 1997, 17, 1565–1572. [Google Scholar] [CrossRef]
- Li, Q.; Wu, C.; Wang, Z. Mechanical properties and microstructures of Nano-Al2O3 particles reinforced Al2O3/AlN composite. J. Alloys Compd. 2015, 636, 20–23. [Google Scholar] [CrossRef]
The Content of AlN (wt%) | Sd (μm) | Sw (μm) | Db (μm) |
---|---|---|---|
0 | 50.06 | 101.39 | 42.23 |
5 | 37.14 | 78.00 | 29.58 |
10 | 30.28 | 67.95 | 22.50 |
15 | 28.53 | 56.62 | 20.90 |
20 | 25.07 | 52.31 | 19.36 |
The Content of AlN (wt%) | Relative Density (%) | ||
---|---|---|---|
1600 °C | 1650 °C | 1700 °C | |
0 | 79.13 ± 0.20 | 97.82 ± 0.15 | 97.03 ± 0.36 |
5 | 73.97 ± 0.41 | 99.24 ± 0.11 | 97.90 ± 0.21 |
10 | 71.84 ± 0.10 | 99.13 ± 0.07 | 97.71 ± 0.35 |
15 | 65.23 ± 0.19 | 98.83 ± 0.17 | 97.16 ± 0.15 |
20 | 64.05 ± 0.12 | 97.90 ± 0.22 | 96.99 ± 0.27 |
AlN Content (wt%) | 0 | 5 | 10 | 15 | 20 |
---|---|---|---|---|---|
Bending strength (MPa) | 345.95 ± 43.98 | 500.35 ± 62.04 | 513.90 ± 52.27 | 572.73 ± 59.40 | 534.51 ± 60.11 |
Mean grain size (μm) | 3.31 | 3.05 | 2.62 | 2.11 | 1.62 |
Specimen | Preparation Method | Bending Strength (MPa) | Thermal Conductivity (W/(m·K)) |
---|---|---|---|
10 wt% AlN-Al2O3 [21] | cold isostatic pressing | 295.7 | 38.80 |
5 wt% Y2O3-10 wt% AlN-Al2O3 [25] | cold isostatic pressing | 475.61 ± 21.56 | 34.21 ± 0.34 |
20 vol% AlN-80 vol% Al2O3 [38] | vacuum hot pressing | 432.65 ± 21.67 | - |
5 wt% Y2O3-15 wt% AlN-Al2O3 | DLP | 572.73 ± 59.40 | 31.72 ± 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Li, Y.; Zong, X.; Wu, S. The Effect of AlN Content on the Properties of Al2O3-AlN Composite Ceramics Fabricated by Digital Light Processing. Crystals 2023, 13, 107. https://doi.org/10.3390/cryst13010107
He S, Li Y, Zong X, Wu S. The Effect of AlN Content on the Properties of Al2O3-AlN Composite Ceramics Fabricated by Digital Light Processing. Crystals. 2023; 13(1):107. https://doi.org/10.3390/cryst13010107
Chicago/Turabian StyleHe, Shaocong, Yehua Li, Xiao Zong, and Shanghua Wu. 2023. "The Effect of AlN Content on the Properties of Al2O3-AlN Composite Ceramics Fabricated by Digital Light Processing" Crystals 13, no. 1: 107. https://doi.org/10.3390/cryst13010107
APA StyleHe, S., Li, Y., Zong, X., & Wu, S. (2023). The Effect of AlN Content on the Properties of Al2O3-AlN Composite Ceramics Fabricated by Digital Light Processing. Crystals, 13(1), 107. https://doi.org/10.3390/cryst13010107