Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Experiments
2.1. Powder Preparation and Characterization
2.2. Cell Preparation and Electrochemical Performance Tests
3. Results and Discussion
3.1. Crystal Structure and Conductivity Properties
3.2. Thermal Expansion, Chemical Compatibility, and Carbon Deposition
3.3. Electrochemical Performance and Microstructure Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmud, L.S.; Muchtar, A.; Somalu, M.R. Challenges in fabricating planar solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 2017, 72, 105–116. [Google Scholar] [CrossRef]
- Chau, K.; Djire, A.; Khan, F. Review and analysis of the hydrogen production technologies from a safety perspective. Int. J. Hydrog. Energy 2022, 47, 13990–14007. [Google Scholar] [CrossRef]
- Zhang, M.; Du, Z.; Zhang, Y.; Zhao, H. Progress of Perovskites as Electrodes for Symmetrical Solid Oxide Fuel Cells. ACS Appl. Energy Mater. 2022, 11, 13081–13095. [Google Scholar] [CrossRef]
- Ruiz-Morales, J.C.; Marrero-López, D.; Canales-Vázquez, J.; Irvine, J.T.S. Symmetric and reversible solid oxide fuel cells. RSC Adv. 2011, 1, 1403–1414. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Liu, M.; Tadé, M.O.; Shao, Z. Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Adv. Energy Mater. 2015, 5, 1500188. [Google Scholar] [CrossRef]
- Yu, J.; Luo, L.; Cheng, L.; Wang, L.; Xia, C.; Xu, X.; Yu, Y. Progress in the Development of Materials of Solid Oxide Fuel Cells. J. Ceram. 2020, 41, 613–626. [Google Scholar] [CrossRef]
- Bian, L.; Duan, C.; Wang, L.; O’Hayre, R.; Cheng, J.; Chou, K.-C. Ce-doped La0.7Sr0.3Fe0.9Ni0.1O3−δ as symmetrical electrodes for high performance direct hydrocarbon solid oxide fuel cells. J. Mater. Chem. A 2017, 5, 15253–15259. [Google Scholar] [CrossRef]
- Park, S.; Vohs, J.M.; Gorte, R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 2000, 404, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Bastidas, D.M.; Tao, S.; Irvine, J.T.S. A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 2006, 16, 1603–1605. [Google Scholar] [CrossRef]
- Kharton, V.; Tsipis, E.; Marozau, I.; Viskup, A.; Frade, J.; Irvine, J. Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ. Solid State Ion. 2007, 178, 101–113. [Google Scholar] [CrossRef]
- Chen, M.; Paulson, S.; Thangadurai, V.; Birss, V. Sr-rich chromium ferrites as symmetrical solid oxide fuel cell electrodes. J. Power Sources 2013, 236, 68–79. [Google Scholar] [CrossRef]
- Zhang, S.; Wan, Y.; Xu, Z.; Xue, S.; Zhang, L.; Zhang, B.; Xia, C. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells. J. Mater. Chem. A 2020, 8, 11553–11563. [Google Scholar] [CrossRef]
- Karim, A.; Abdalla, A.; Park, J.-Y.; Petra, P.; Azad, A. Effects of Ti doping on the electrochemical performance of (La0.75Sr0.25)(Mn0.5Cr0.5)O3-δ anode for solid oxide fuel cells. Process. Appl. Ceram. 2019, 13, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Dong, X.; Xiao, G.; Zhao, F.; Chen, F. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xiao, G.; Howell, T.; Reitz, T.L.; Chen, F. A Novel Redox Stable Catalytically Active Electrode for Solid Oxide Fuel Cells. ECS Trans. 2011, 35, 1357–1366. [Google Scholar] [CrossRef]
- Xiao, J.; Han, D.; Yu, F.; Zhang, L.; Liu, J.; Zhan, Z.; Zhang, Y.; Dong, P. Characterization of symmetrical SrFe0.75Mo0.25O3−δ electrodes in direct carbon solid oxide fuel cells. J. Alloys Compd. 2016, 688, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Canales-Vázquez, J.; Ruiz-Morales, J.C.; Marrero-López, D.; Peña-Martínez, J.; Núñez, P.; Gómez-Romero, P. Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs). J. Power Sources 2007, 171, 552–557. [Google Scholar] [CrossRef]
- Hanif, M.B.; Gao, J.-T.; Shaheen, K.; Wang, Y.-P.; Yasir, M.; Zhang, S.-L.; Li, C.-J.; Li, C.-X. Performance evaluation of highly active and novel La0.7Sr0.3Ti0.1Fe0.6Ni0.3O3-δ material both as cathode and anode for intermediate-temperature symmetrical solid oxide fuel cell. J. Power Sources 2020, 472, 228498. [Google Scholar] [CrossRef]
- Shah, M.A.K.Y.; Lu, Y.; Mushtaq, N.; Yousaf, M.; Rauf, S.; Asghar, M.I.; Lund, P.D.; Zhu, B. Perovskite Al-SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cells. Sustain. Energy Fuels 2022, 6, 3794–3805. [Google Scholar] [CrossRef]
- Arrivé, C.; Delahaye, T.; Joubert, O.; Gauthier, G.H. Study of (La,Sr)(Ti,Ni)O3-δ materials for symmetrical Solid Oxide Cell electrode—Part C: Electrical and electrochemical behavior. Ceram. Int. 2020, 46, 23442–23456. [Google Scholar] [CrossRef]
- Nam-In, K.; Jin, S.Y.; Sup, Y.T.; Ryul, C.S.; Arslan, A.R.; Taekjib, C.; Young-Soo, S.; Kug-Seung, L.; Yeon, H.J.; Seok, C.W.J.S.A. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci. Adv. 2018, 4, eaap9360. [Google Scholar]
- Gozzo, C.B.; Soares, M.; Sczancoski, J.C.; Nogueira, I.C.; Leite, E.R. Investigation of the electrocatalytic performance for oxygen evolution reaction of Fe-doped lanthanum nickelate deposited on pyrolytic graphite sheets. Int. J. Hydrog. Energy 2019, 44, 21659–21672. [Google Scholar] [CrossRef]
- Niwa, E.; Uematsu, C.; Hashimoto, T. Sintering temperature dependence of conductivity, porosity and specific surface area of LaNi0.6Fe0.4O3 ceramics as cathode material for solid oxide fuel cells—Superiority of Pechini method among various solution mixing processes. Mater. Res. Bull. 2013, 48, 1–6. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Qian, Q.; Chen, Q.J. Studies on B sites in Fe-doped LaNiO3 perovskite for SCR of NOx with H2. Int. J. Hydrog. Energy 2014, 39, 15836–15843. [Google Scholar] [CrossRef]
- Luo, T.; Liu, X.; Meng, X.; Wu, H.; Wang, S.; Zhan, Z.J.J.o.P.S. In situ formation of LaNi0.6Fe0.4O3-δ–carbon nanotube hybrids as anodes for direct-methane solid oxide fuel cells. J. Power Sources 2015, 299, 472–479. [Google Scholar] [CrossRef]
- Arandiyan, H.; Li, J.; Ma, L.; Hashemnejad, S.M.; Mirzaei, M.Z.; Chen, J.; Chang, H.; Liu, C.; Wang, C.; Chen, L. Methane reforming to syngas over LaNixFe1−xO3 (0≤x≤1) mixed-oxide perovskites in the presence of CO2 and O2. J. Ind. Eng. Chem. 2012, 18, 2103–2114. [Google Scholar] [CrossRef]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y.J. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett. 2015, 399–404. [Google Scholar] [CrossRef]
- Samat, A.A.; Jais, A.A.; Somalu, M.R.; Osman, N.; Muchtar, A.; Lim, K.L. Technology. Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application. J. Sol-Gel Sci. Technol. 2018, 86, 617–630. [Google Scholar] [CrossRef]
- Zhan, G.; Mao, Z.; Cheng, W.; Liu, Z. Preparation and characterization of LaxSrxNiyFeyOδ cathodes for low-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2010, 35, 12905–12910. [Google Scholar]
- Montini, T.; Bevilacqua, M.; Fonda, E.; Casula, M.F.; Fornasiero, P. Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6Fe0.4O3-δ mixed oxides. Chem. Mater. 2009, 21, 1768–1774. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Montini, T.; Tavagnacco, C.; Fonda, E.; Fornasiero, P.; Graziani, M. Preparation, Characterization, and Electrochemical Properties of Pure and Composite LaNi0.6Fe0.4O3-δBased Cathodes for IT-SOFC. Chem. Mater. 2007, 19, 5926–5936. [Google Scholar] [CrossRef]
- Falcón, H.; Goeta, A.E.; Punte, G.; Carbonio, R.E. Crystal Structure Refinement and Stability of LaFexNi1−xO3Solid Solutions. J. Solid State Chem. 1997, 133, 379–385. [Google Scholar] [CrossRef]
- Mizutani, Y.; Tamura, M.; Kawai, M.; Yamamoto, O. Development of high-performance electrolyte in SOFC. Solid State Ion. 1994, 72, 271–275. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Ge, L.; Zheng, Y.; Chen, H.; Guo, L. YSZ electrolyte support with novel symmetric structure by phase inversion process for solid oxide fuel cells. Energy Convers. Manag. 2018, 177, 11–18. [Google Scholar] [CrossRef]
- Han, D.; Liu, X.; Zeng, F.; Qian, J.; Wu, T.; Zhan, Z. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2012, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Li, H.; Lyu, Z.; Wang, Y.; Han, M.; Sun, Z.; Sun, K. Identification of Electrode Process in Large-size Solid Oxide Fuel Cell. Acta Phys. Chim. Sin. 2020, 38, 2011009. [Google Scholar] [CrossRef]
- Wang, D.; Wong, S.I.; Sunarso, J.; Xu, M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. A Direct n-Butane Solid Oxide Fuel Cell Using Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-delta Perovskite as the Reforming Layer. ACS Appl. Mater. Interfaces 2021, 13, 20105–20113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Chen, T.; Fang, D.; Wang, S. Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells. Crystals 2023, 13, 152. https://doi.org/10.3390/cryst13010152
Shi C, Chen T, Fang D, Wang S. Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells. Crystals. 2023; 13(1):152. https://doi.org/10.3390/cryst13010152
Chicago/Turabian StyleShi, Caixia, Ting Chen, Dongyang Fang, and Shaorong Wang. 2023. "Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells" Crystals 13, no. 1: 152. https://doi.org/10.3390/cryst13010152
APA StyleShi, C., Chen, T., Fang, D., & Wang, S. (2023). Evaluation of La1−xSrxNi0.4Fe0.6O3-δ as Electrode Materials for Direct Methane Symmetrical Solid Oxide Fuel Cells. Crystals, 13(1), 152. https://doi.org/10.3390/cryst13010152