Synthesis, Cytotoxic Activity, Crystal Structure, DFT, Molecular Docking Study of β-Enaminonitrile Incorporating 1H-Benzo[f]Chromene Moiety
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Equipment
2.2. Synthesis of 3-Amino-1-(4-Bromophenyl)-8-Methoxy-1H-Benzo[f]chromene-2-Carbonitrile (4)
2.3. X-Ray Crystallography Analysis
2.4. Biological Screening
2.5. Hirschfeld Fingerprint Analysis
2.6. Quantum Simulations
2.7. Molecular Docking with Their Validation Method
2.8. Molecular Dynamic Simulations
3. Results and Discussion
3.1. Chemistry
3.2. Crystal Data
Structural Dimers of Crystal Packing
3.3. Profile for the Crystal-Packing
3.4. Weak Interaction Profile
3.5. Theoretical Analysis for Molecule 4
3.6. Antitumor Assay
3.7. Molecular Docking Simulations
3.7.1. In the 1M17 Case
3.7.2. In the 4HJO Case
3.8. Molecular Dynamic Simulations of Compound 4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pratap, R.; Ram, V.J. Natural and Synthetic Chromenes, Fused Chromenes, and Versatility of Dihydrobenzo[h]chromenes in Organic Synthesis. Chem. Rev. 2014, 114, 10476–10526. [Google Scholar] [CrossRef] [PubMed]
- Killander, D.; Sterner, O. Synthesis of the bioactive benzochromenes pulchrol and pulchral, metabolites of Bourreria pulchra. Eur. J. Org. Chem. 2014, 8, 1594–1596. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, A.; Kaur, H.; Ishar, M. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, biological evaluation, quantitative structure activity relationship, and molecular docking studies. Chem. Biol. Drug. Des. 2016, 87, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Bingi, C.; Emmadi, N.R.; Chennapuram, M.; Poornachandra, Y.; Kumar, C.G.; Nanubolu, J.B.; Atmakur, K. One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorg. Med. Chem. Lett. 2015, 25, 1915–1919. [Google Scholar] [CrossRef] [PubMed]
- Vosooghi, M.; Rajabalian, S.; Sorkhi, M.; Badinloo, M.; Nakhjiri, M.; Negahbani, A.S.; Asadipour, A.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Synthesis and cytotoxic activity of some 2-amino-4-aryl-3-cyano-7-(dimethylamino)-4H-chromenes. RPS 2010, 5, 13–18. [Google Scholar]
- Kasibhatla, S.; Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron, F.; Bouffard, D.; Yang, Q.; et al. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther. 2004, 3, 1365–1373. [Google Scholar] [CrossRef]
- Ahmed, H.E.A.; El-Nassag, M.A.A.; Hassan, A.; Okasha, R.M.; Ihmaid, S.; Fouda, A.M.; Afifi, T.H.; Aljuhani, A.; El-Agrody, A.M. Introducing novel potent anticancer agents of 1H-benzo[f]chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect. J. Enzym. Inhib. Med. Chem. 2018, 33, 1074–1088. [Google Scholar] [CrossRef] [Green Version]
- Alblewi, F.F.; Okasha, R.M.; Eskandrani, A.A.; Afifi, T.H.; Mohamed, H.M.; Halawa, A.H.; Fouda, A.M.; Al-Dies, A.-A.M.; Mora, A.; El-Agrody, A.M. Design and synthesis of novel heterocyclic-based 4H-benzo[h]chromene moieties: Targeting antitumor caspase 3/7 activities and cell cycle analysis. Molecules 2019, 24, 1060. [Google Scholar] [CrossRef] [Green Version]
- Alblewi, F.F.; Okasha, R.M.; Hritani, Z.M.; Mohamed, H.M.; El-Nassag, M.A.A.; Halawa, A.H.; Mora, A.; Fouda, A.M.; Assirid, M.A.; Al-Dies, A.M.; et al. Antiproliferative effect, cell cycle arrest and apoptosis generation of novel synthesized anticancer heterocyclic derivatives based 4H-benzo[h]chromene. Bioorg. Chem. 2019, 87, 560–571. [Google Scholar] [CrossRef]
- El-Mawgoud, H.K.A.; Fouda, A.M.; El-Nassag, M.A.A.; Elhenawy, A.A.; Alshahrani, M.Y.; El-Agrody, A.M. Discovery of novel rigid analogs of 2-naphthol with potent anticancer activity through multi-target topoisomerase I & II and tyrosine kinase receptor EGFR & VEGFR-2 inhibition mechanism. Chem. Biol. Interact. 2022, 355, 109838. [Google Scholar]
- El Gaafary, M.; Lehner, J.; Fouda, A.M.; Hamed, A.; Ulrich, J.; Simmet, T.; Syrovets, T.; El-Agrody, A.M. Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo[f]chromene derivatives. Bioorg. Chem. 2021, 116, 105402. [Google Scholar] [CrossRef] [PubMed]
- El-Agrody, A.M.; Fouda, A.M.; Assiri, M.A.; Mora, A.; Ali, T.E.; Alam, M.M.; Alfaifi, M.Y. In vitro anticancer activity of py-rano[3,2-c]chromene derivatives with both cell cycle arrest and apoptosis induction. Med. Chem. Res. 2020, 29, 617–629. [Google Scholar] [CrossRef]
- Ahagha, M.H.; Dehghana, G.; Mehdipoura, M.; Teimuri-Mofradb, R.; Payamib, E.; Sheibanic, N.; Ghaffaria, M.; Asadi, M. Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase dependent apoptosis in colorectal cancer cell line. Bioorg. Chem. 2019, 93, 103329. [Google Scholar] [CrossRef] [PubMed]
- Dgachi, Y.; Bautista-Aguilera, O.M.; Benchekroun, M.; Martin, H.; Bonet, A.; Knez, D.; Godyn, J.; Malawska, B.; Gobec, S.; Chioua, M.; et al. Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Molecules 2016, 21, 634. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Carnaroglio, D. Microwave Chemistry; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; p. 9873110479928. [Google Scholar]
- Amariucai-Mantu, D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave assisted reactions of Azahetero-cycles formedic-inal chemistry applications. Molecules 2020, 25, 716. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.N.; Ghias, M.; Shah, S.W.A.; Shoaib, M.; Tahir, M.N.; Ashfaq, M.; Ibrahim, M.A.A.; Andleeb, H.; Gilf, D.M.; Frontera, A. X-ray characterization, Hirshfeld surface analysis, DFT calculations, in vitro and in silico lipoxygenase inhibition (LOX) studies of dichlorophenyl substituted 3-hydroxychromenones. New J. Chem. 2021, 45, 19928–19940. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXTL-PC. version 5.1. Siemens Analytical Instruments, Inc.: Madison, WI, USA, 1997. [Google Scholar]
- Schrödinger, M. Schrödinger, Schrödinger Release 2018-1; Schrödinger: New York, NY, USA, 2018. [Google Scholar]
- Lu, Y.; Zhang, B.; Wang, N.; Li, M.; Xi, N. Investigation of Major Flavonoids from Artemisia argyi as a Potential COVID-19 Drug: Molecular Docking and DFT Calculations. Crystals 2022, 12, 990. [Google Scholar] [CrossRef]
- El Gaafary, M.; Syrovets, T.; Mohamed, H.M.; Elhenawy, A.A.; El-Agrody, A.M.; El-Galil, E.; Amr, A.; Ghabbour, H.A.; Almehizia, A.A. Synthesis, Cytotoxic Activity, Crystal Structure, DFT Studies and Molecular Docking of 3-Amino-1-(2, 5-dichlorophenyl)-8-methoxy-1 H-benzo [f] chromene-2-carbonitrile. Crystals 2021, 11, 184. [Google Scholar] [CrossRef]
- Lu, X. DC-CFractal Geometry and Architecture Design: Case Study Review. Chaotic Model. Simul. 2012, 311, 322. [Google Scholar]
- Zhang, Y.; Zhang, T.J.; Tu, S.; Zhang, Z.H.; Meng, F.H. Identification of novel Src inhibitors: Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations. Molecules 2020, 25, 4094. [Google Scholar] [CrossRef] [PubMed]
- Ouassaf, M.; Belaidi, S.; Chtita, S.; Lanez, T.; Abul Qais, F.; Md Amiruddin, H. Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn. 2021, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Belhassan, A.; Zaki, H.; Chtita, S.; Alaqarbeh, M.; Alsakhen, N.; Benlyas, M.; Lakhlifi, T.; Bouachrine, M. Camphor, Artemisinin and Sumac Phytochemicals as inhibitors against COVID-19: Computational approach. Comput. Biol. Med. 2021, 136, 104758. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.H.; Murugesan, S.; Amran, S.I.; Chander, S.; Alanazi, M.M.; Hadda, T.B.; Shakya, S.; Pratama, M.R.F.; Das, B.; Biswas, S.; et al. Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chem. 2022, 119, 105572. [Google Scholar] [CrossRef] [PubMed]
- Alhomrani, M.; Alsanie, W.F.; Alamri, A.S.; Alyami, H.; Habeeballah, H.; Alkhatabi, H.A.; Felimban, R.I.; Haynes, J.M.; Shakya, S.; Raafat, B.M.; et al. Enhancing the Antipsychotic Effect of Risperidone by Increasing Its Binding Affinity to Serotonin Receptor via Picric Acid: A Molecular Dynamics Simulation. Pharmaceuticals 2022, 15, 285. [Google Scholar] [CrossRef]
- Replace 29 by Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of Bond Lengths determined by X-Ray and Neutron Diffraction Part. J. Chem. Soc. Perkins Trans. 1987, 2, 1–19. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Arnaldsson, A.; Jonsson, H. A fast robust algorithm Bader decomposition of charge density. Comput. Master. Sci. 2003, 36, 354–360. [Google Scholar] [CrossRef]
- Akman, F.; Issaoui, N.; Kazachenko, A.S. Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O) n)(n = 1,…, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J. Mol. Model 2020, 26, 161. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Rong, C.; Lu, T.; Zhou, P.; Liu, S. Information functional theory: Electronic properties as functionals of information for atoms and molecules. J. Phys. Chem. 2016, 120, 3634–3642. [Google Scholar] [CrossRef]
- Bultinck, P.; Winter, H.D.; Langenaeker, W.; Tollenare, J.P. Computational Medicinal Chemistry for Drug Discovery; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Politzer, P.; Murray, J.S.; Bulat, F.A. Average local ionization energy: A review. J. Mol. Model. 2010, 16, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Sjoberg, P.; Murray, J.S.; Brinck, T.; Politzer, P. Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Can. J. Chem. 1990, 68, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002, 48, 46265–46272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J. 2012, 448 Pt 3, 417. [Google Scholar] [CrossRef]
D—H•••A | D—H | H•••A | D•••A | D—H•••A |
---|---|---|---|---|
N1—H2N1···N2i | 0.85 (4) | 2.19 (4) | 3.033 (4) | 172 (4) |
C18—H18A···N2ii | 0.9300 | 2.5100 | 3.306 (5) | 143.00 |
Symmetry codes: (i) −x, −y + 2, −z; (ii) −x + 1, −y + 2, −z. |
Dimer | Symmetry | R | Eele | Epol | Edis | Erep | Etot |
---|---|---|---|---|---|---|---|
1 | −x, −y, −z | 6.89 | −19.9 | −2.8 | −93.7 | 50.1 | −73.7 |
2 | −x, −y, −z | 11.55 | −70.8 | −17.6 | −13.2 | 62.3 | −61 |
3 | −x, −y, −z | 6.28 | −20 | −2.8 | −47 | 40 | −39.4 |
4 | −x, −y, −z | 8.87 | −3.8 | −1.9 | −33.9 | 9.7 | −28.9 |
HOMO | LUMO | ΔG | η | S | χ | ωi | εI | I | A | ΔEB−D | ΔNmax |
---|---|---|---|---|---|---|---|---|---|---|---|
−0.28 | −0.04 | 0.16 | 0.07 | 12.75 | −0.12 | 0.09 | 0.86 | 0.28 | 0.04 | −0.026 | −0.605 |
ωi = μ2/2ή | εI = 1/ωi | ΔEB−D = /4 |
IC50 µM a | ||||
---|---|---|---|---|
Cancerotoxicity | Normotoxicity | |||
Compound | MCF-7 b | MCF-7/ADR | HFL-1 | WI-38 |
4 | 4.9 ± 0.25 | 13.6 ± 0.1 | 42.1 ± 0.2 | 51.7 ± 1.1 |
Vinblastine | 7.5 ± 0.03 | |||
Doxorubicin | 0.8 ± 0.01 | 18.6 ± 0.2 |
ΔE | rmsd | H.B | EInt. | E_ele | Binding Region | Interaction | Distance | |
---|---|---|---|---|---|---|---|---|
1M17 | ||||||||
4 | −6.43 | 1.73 | −7.41 | −29.95 | −11.01 | Met769 | H-acceptor | 2.49° |
AQ44 | −5.37 | 1.24 | −8.17 | −17.97 | −9.20 | Met769 | H-donor | 2.27° |
4HJO | ||||||||
4 | −8.86 | 1.46 | −30.25 | −25.94 | −9.81 | GLN767 | H-donor | 2.29° |
Met769 | H-acceptor | 2.27° | ||||||
AQ44 | −7.49 | 1.97 | −25.27 | −18.60 | −9.29 | GLN767 | H-donor | 2.23° |
Met769 | H-acceptor | 2.73° | ||||||
Leu694 | pi-H | 4.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsehli, M.H.; Al-Harbi, L.M.; Okasha, R.M.; Fouda, A.M.; Ghabbour, H.A.; Amr, A.E.-G.E.; Elhenawy, A.A.; El-Agrody, A.M. Synthesis, Cytotoxic Activity, Crystal Structure, DFT, Molecular Docking Study of β-Enaminonitrile Incorporating 1H-Benzo[f]Chromene Moiety. Crystals 2023, 13, 24. https://doi.org/10.3390/cryst13010024
Alsehli MH, Al-Harbi LM, Okasha RM, Fouda AM, Ghabbour HA, Amr AE-GE, Elhenawy AA, El-Agrody AM. Synthesis, Cytotoxic Activity, Crystal Structure, DFT, Molecular Docking Study of β-Enaminonitrile Incorporating 1H-Benzo[f]Chromene Moiety. Crystals. 2023; 13(1):24. https://doi.org/10.3390/cryst13010024
Chicago/Turabian StyleAlsehli, Mosa H., Lali M. Al-Harbi, Rawda M. Okasha, Ahmed M. Fouda, Hazem A. Ghabbour, Abd El-Galil E. Amr, Ahmed A. Elhenawy, and Ahmed M. El-Agrody. 2023. "Synthesis, Cytotoxic Activity, Crystal Structure, DFT, Molecular Docking Study of β-Enaminonitrile Incorporating 1H-Benzo[f]Chromene Moiety" Crystals 13, no. 1: 24. https://doi.org/10.3390/cryst13010024
APA StyleAlsehli, M. H., Al-Harbi, L. M., Okasha, R. M., Fouda, A. M., Ghabbour, H. A., Amr, A. E. -G. E., Elhenawy, A. A., & El-Agrody, A. M. (2023). Synthesis, Cytotoxic Activity, Crystal Structure, DFT, Molecular Docking Study of β-Enaminonitrile Incorporating 1H-Benzo[f]Chromene Moiety. Crystals, 13(1), 24. https://doi.org/10.3390/cryst13010024