Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Topological Semi-Metal HfIrAs from First-Principles Calculations
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Lattice Constant of HfIrAs
3.2. Elastic Properties of HfIrAs
3.3. Band Structure of HfIrAs
3.4. Lattice Dynamics and Thermodynamic Properties of HfIrAs
3.5. Thermoelectric Properties of HfIrAs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiely, E.; Zwane, R.; Fox, R.; Reilly, A.M.; Guerin, S. Density functional theory predictions of the mechanical properties of crystalline materials. CrystEngComm 2021, 23, 5697–5710. [Google Scholar] [CrossRef]
- Jain, A.; Shin, Y.; Persson, K.A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Touzani, R.; Krüger, M. First Principles Density Functional Theory Prediction of the Crystal Structure and the Elastic Properties of Mo2ZrB2 and Mo2HfB2. Crystals 2020, 10, 865. [Google Scholar] [CrossRef]
- Hasnip, P.J.; Refson, K.; Probert, M.I.J.; Yates, J.R.; Clark, S.J.; Pickard, C.J. Density functional theory in the solid state. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130270. [Google Scholar] [CrossRef] [Green Version]
- Pavarini, E. Solving the strong-correlation problem in materials. Riv. Nuovo Cim. 2021, 44, 597–640. [Google Scholar] [CrossRef]
- Borlido, P.; Schmidt, J.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Exchange-correlation functionals for band gaps of solids: Benchmark, reparametrization and machine learning. NPJ Comput. Mater. 2020, 6, 96. [Google Scholar] [CrossRef]
- Lin, L.; Lu, J.; Ying, L. Numerical methods for Kohn–Sham density functional theory. Acta Numer. 2019, 28, 405–539. [Google Scholar] [CrossRef]
- Woods, N.D.; Payne, M.C.; Hasnip, P.J. Computing the self-consistent field in Kohn–Sham density functional theory. J. Phys. Condens. Matter 2019, 31, 453001. [Google Scholar] [CrossRef] [Green Version]
- Arbouche, S.C.O.; Amara, K.; Zemouli, M.; Benallou, Y.; Azzaz, Y.; Belgoumène, B.; Elkeurti, M.; Ameri, M. A computational study of the optoelectronic and thermoelectric properties of HfIrX (X = As, Sb and Bi) in the cubic LiAlSi-type structure. J. Comput. Electron. 2017, 16, 765–775. [Google Scholar]
- Gautier, R.; Zhang, X.; Hu, L.; Yu, L.; Lin, Y.; Sunde, T.O.L.; Chon, D.; Poeppelmeier, K.R.; Zunger, A. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 2015, 7, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wei, J. Topological phase transition in half-Heusler compounds HfIrX (X = As, Sb, Bi). Comput. Mater. Sci. 2016, 124, 311–315. [Google Scholar] [CrossRef]
- Arikan, N.; Yildiz, G.D.; Yildiz, Y.G.; Iyigör, A. Electronic, Elastic, Vibrational and Thermodynamic Properties of HfIrX (X = As, Sb and Bi) Compounds: Insights from DFT-Based Computer Simulation. J. Electron. Mater. 2020, 49, 3052–3062. [Google Scholar] [CrossRef]
- Dong, Z.; Luo, J.; Wang, C.; Jiang, Y.; Tan, S.; Zhang, Y.; Grin, Y.; Yu, Z.; Guo, K.; Zhang, J.; et al. Half-Heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics. Nat. Commun. 2022, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.Y.S.; Zhang, D.; Duran, S.S.F.; Tan, X.Y.; Tan, C.K.I.; Xu, J.; Suwardi, A. A Systematic Approach for Semiconductor Half-Heusler. Front. Mater. 2021, 8, 745698. [Google Scholar] [CrossRef]
- Khandy, S.A. Inspecting the electronic structure and thermoelectric power factor of novel p-type half-Heuslers. Sci. Rep. 2021, 11, 20756. [Google Scholar] [CrossRef] [PubMed]
- Jaishi, D.R.; Sharma, N.; Karki, B.; Belbase, B.P.; Adhikari, R.P.; Ghimire, M.P. Electronic structure and thermoelectric properties of half-Heusler alloys NiTZ. AIP Adv. 2021, 11, 025304. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, L.; Bo, L.; Wu, D. Synthesis and Thermoelectric Properties of Ni-Doped ZrCoSb Half-Heusler Compounds. Metals 2018, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Xia, K.; Zhao, X.B.; Zhu, T.-J. High performance p-type half-Heusler thermoelectric materials. J. Phys. D Appl. Phys. 2018, 51, 113001. [Google Scholar] [CrossRef]
- Kaur, K. TiPdSn: A half Heusler compound with high thermoelectric performance. Eur. Lett. 2017, 117, 47002. [Google Scholar] [CrossRef]
- Bian, Q. Waste heat: The dominating root cause of current global warming. Environ. Syst. Res. 2020, 9, 8. [Google Scholar] [CrossRef]
- Poon, S.J. Half-Heusler Compounds: Promising Materials For Mid-To-High Temperature Thermoelectric Conversion. J. Phys. D Appl. Phys. 2019, 52, 493001. [Google Scholar] [CrossRef]
- Mokhtari, M.; Dahmane, F.; Benabdellah, G.; Zekri, L.; Benalia, S.; Zekri, N. Theoretical study of the structural stability, electronic and magnetic properties of XVSb (X = Fe, Ni, and Co) half-Heusler compounds. Condens. Matter Phys. 2018, 21, 43705. [Google Scholar] [CrossRef]
- Erkisi, A.; Surucu, G. The investigation of electronic, magnetic, mechanical, and lattice dynamical properties of PdMX (M = Cr, Fe and X = Si and Ge) ferromagnetic half-Heusler metallics: An ab initio study. Mater. Res. Express 2017, 4, 066504. [Google Scholar] [CrossRef]
- Zhang, R.L.; Damewood, L.; Fong, C.Y.; Yang, L.H.; Peng, R.W.; Felser, C. A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant. AIP Adv. 2016, 6, 115209. [Google Scholar] [CrossRef] [Green Version]
- Khandy, S.A.; Gupta, D.C. Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite. Mater. Chem. Phys. 2017, 198, 380. [Google Scholar] [CrossRef]
- Eliassen, S.N.H.; Katre, A.; Madsen, G.K.H.; Persson, C.; Løvvik, O.M.; Berland, K. Lattice thermal conductivity of Tix Zry Hf1-x-y NiSn half-Heusler alloys calculated from first principles: Key role of nature of phonon modes. Phys. Rev. B 2017, 95, 045202. [Google Scholar] [CrossRef] [Green Version]
- Uto, O.T.; Adebambo, P.O.; Akinlami, J.O.; Kenmoe, S.; Adebayo, G.A. Electronic, Structural, Mechanical, and Thermodynamic Properties of CoYSb (Y = Cr, Mo, W) Half-Heusler Compounds as Potential Spintronic Materials. Solids 2022, 3, 22–33. [Google Scholar] [CrossRef]
- Khandy, S.A.; Gupta, D.C. DFT investigations on mechanical stability, electronic structure and magnetism in Co2TaZ (Z= Al, Ga, In) Heusler alloys. Semicond. Sci. Technol. 2017, 32, 125019. [Google Scholar] [CrossRef]
- Anand, S.; Xia, K.; Hegde, V.I.; Aydemir, U.; Kocevski, V.; Zhu, T.; Wolverton, C.; Snyder, G.J. A valence balanced rule for discovery of 18-electron half-Heuslers with defects. Energy Environ. Sci. 2018, 11, 1480. [Google Scholar] [CrossRef]
- Khandy, S.A.; Gupta, D.C. Understanding ferromagnetic phase stability, electronic and transport properties of BaPaO3 and BaNpO3 from Ab-initio calculations. J. Elect. Mater. 2017, 46, 5531. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S. Simple rules for the understanding of Heusler compounds. Prog. Solid StateChem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Vikram; Sahni, B.; Barman, C.K.; Alam, A. Accelerated Discovery of New 8-Electron Half-Heusler Compounds as Promising Energy and Topological Quantum Materials. J. Phys. Chem. C 2019, 123, 7074–7080. [Google Scholar] [CrossRef]
- Shekhar, C.; Kumar, N.; Grinenko, V.; Singh, S.; Sarkar, R.; Luetkens, H.; Wu, S.-C.; Zhang, Y.; Komarek, A.C.; Kampert, E.; et al. Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd). Proc. Natl. Acad. Sci. USA 2018, 115, 9140–9144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, J.; Li, P.; Zhang, C.; Hou, Z.; Wen, Y.; Zhang, Q.; Wang, W.; Zhang, X. Topological electronic state and anisotropic Fermi surface in half-Heusler GdPtBi. J. Phys. Condens. Matter 2020, 32, 355707. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Hu, R.; Kirshenbaum, K.; Hughes, A.; Syers, P.; Wang, X.; Wang, K.; Wang, R.; Saha, S.R.; Pratt, D. Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 2015, 1, e1500242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandeep; Ghimire, M.P.; Deka, D.; Rai, D.P.; Shankar, A.; Thapa, R.K. Magnetic and electronic properties of half-metallic NiTbSb: A first principles study. Indian J. Phys. 2012, 86, 301–305. [Google Scholar] [CrossRef]
- Roy, A.; Bennett, J.W.; Rabe, K.M.; Vanderbilt, D. Half-Heusler Semiconductors as Piezoelectrics. Phys. Rev. Lett. 2012, 109, 037602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghimire, M.; Sandeep; Sinha, T.; Thapa, R. First principles study of the electronic and magnetic properties of semi-Heusler alloys NiXSb (X = Ti, V, Cr and Mn). J. Alloy Compd. 2011, 509, 9742–9752. [Google Scholar] [CrossRef]
- Feng, W.; Xiao, D.; Zhang, Y.; Yao, Y. Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B 2010, 82, 235121. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Gao, S.; Zeng, X.; Dehkordi, A.M.; Tritt, T.M.; Poon, S.J. Uncovering high thermoelectric figure of merit in (Hf,Zr)NiSn half-Heusler alloys. Appl. Phys. Lett. 2015, 107, 041902. [Google Scholar] [CrossRef] [Green Version]
- Page, A.; Poudeu, P.F.P.; Uher, C. A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties. J. Mater. 2016, 2, 104–113. [Google Scholar] [CrossRef]
- Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 150901. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Mori-Sanchez, P.; Yang, W. Insights into Current Limitations of Density Functional Theory. Science 2008, 321, 792–794. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974–12980. [Google Scholar] [CrossRef] [Green Version]
- Runge, E.; Gross, E. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Sham, L.J.; Schlüter, M. Density-Functional Theory of the Energy Gap. Phys. Rev. Lett. 1983, 51, 1888–1891. [Google Scholar] [CrossRef]
- Karasiev, V.V.; Sjostrom, T.; Trickey, S.B. Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations. Phys. Rev. B 2012, 86, 115101. [Google Scholar] [CrossRef] [Green Version]
- Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 2001, 115, 3540–3544. [Google Scholar] [CrossRef]
- Hua, X.; Chen, X.; Goddard, W.A. Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues. Phys. Rev. B 1997, 55, 16103–16109. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, S.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Scandolo, S.; Giannozzi, P.; Cavazzoni, C.; de Gironcoli, S.; Pasquarello, A.; Baroni, S. First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Z. Krist. Cryst. Mater. 2005, 220, 574–579. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ruffino, F.F.; et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5189. [Google Scholar] [CrossRef]
- Madsen, G.K.; Carrete, J.; Verstraete, M.J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Madsen, G.K.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.; Masuri, N.S.; Haq, B.U.; Shaari, A.; AlFaifi, S.; Butt, F.K.; Muhamad, M.N.; Ahmed, M.; Tahir, S.A. Investigations of electronic and thermoelectric properties of half-Heusler alloys XMgN (X = Li, Na, K) by first-principles calculations. Mater. Des. 2017, 136, 196–203. [Google Scholar] [CrossRef]
- Page, Y.L.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. 1952, 65, 349. [Google Scholar] [CrossRef]
- Reuss, A.; Angew, Z. Calculation of the centrifugal limit of mixed crystals due to the plasticity condition for single crystals. Math. Mech. 1929, 9, 49. [Google Scholar]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices. In Dynamical Theory of Crystal Lattices; Oxford Clarendon Press: Oxford, UK, 1956; pp. 120–156. [Google Scholar]
- Huntington, H.B. Solid State Physics, F. Seitz and D. Properties of Engineering Ceramics; Kriegel, W., Palmour, H., Eds.; Academic Press Inc.: New York, NY, USA, 1958; Volume 7. [Google Scholar]
- Voigt, W. Lehrbuck der Kristallphysik; B. B. Teubner: Leipzig, Germany, 1928; p. 739. [Google Scholar]
- Yu, W.Y.; Wang, N.; Xiao, X.B.; Tang, B.Y.; Peng, L.M.; Ding, W.J. First-principles investigation of the binary AB2 type Laves phase in Mg–Al–Ca alloy: Electronic structure and elastic properties. Solid State Sci. 2009, 11, 1400–1407. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, H.K.; Xia, J.; Zhong, M.M.; Kuang, A.L.; Wang, G.Z.; Zheng, X.R.; Chen, H. First-principles study on structural, electronic, elastic and thermodynamic properties of the full-Heusler alloys Co2YZ (Y = Sc, Cr and Z = Al, Ga). Eur. Phys. J. Appl. Phys. 2015, 70, 31001. [Google Scholar] [CrossRef]
- Chen, X.R.; Zhong, M.M.; Feng, Y.; Zhou, Y.; Yuan, H.K.; Chen, H. Structural, electronic, elastic, and thermodynamic properties of the spin-gapless semiconducting Mn2CoAl inverse Heusler alloy under pressure. Phys. Status Solidi 2015, 252, 2830. [Google Scholar] [CrossRef]
- Huang, H.-M.; Zhang, C.-K.; He, Z.-D.; Zhang, J.; Yang, J.-T.; Luo, S.-J. Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z = S, Se, and Te). Chin. Phys. B 2018, 27, 017103. [Google Scholar] [CrossRef]
- Engineering ToolBox. Metals and Alloys—Bulk Modulus. Available online: www.engineeringtoolbox.com/bulk-modulus-metals (accessed on 5 September 2022).
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823. [Google Scholar] [CrossRef]
- Rogl, G.; Grytsiv, A.; Gürth, M.; Tavassoli, A.; Ebner, C.; Wünschek, A.; Puchegger, S.; Soprunyuk, V.; Schranz, W.; Bauer, E.; et al. Mechanical properties of half-Heusler alloys. Acta Mater. 2016, 107, 178–195. [Google Scholar] [CrossRef]
- Manna, K.; Sun, Y.; Muechler, L.; Kübler, J.; Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 2018, 3, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Malakkal, L.; Szpunar, B.; Zuniga, J.C.; Siripurapu, R.K.; Szpunar, J.A. First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO. Int. J. Comput. Mater. Sci. Eng. 2016, 5, 1650008. [Google Scholar] [CrossRef]
- Rittiruam, M.; Yangthaisong, A.; Seetawan, T. Reduced lattice thermal conductivity of Ti-site substituted transition metals Ti1-XTMXNiSn: A quasi-harmonic Debye model study. Chin. J. Phys. 2019, 57, 393–402. [Google Scholar] [CrossRef]
- Baroni, S. Thermodynamics from lattice dynamics with DFT. EPJ Web Conf. 2011, 14, 02001. [Google Scholar] [CrossRef] [Green Version]
- Baroni, S.; Giannozzi, P.; Isaev, E. Density-Functional Perturbation Theory for Quasi-Harmonic Calculations. Rev. Miner. Geochem. 2010, 71, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Petit, A.T.; Dulong, P.L. Recherches sur quelques points importans de la theorie de la chaleur. Ann. Chim. Phys. 1819, 10, 395. [Google Scholar]
- Schmitt, J.; Gibbs, Z.M.; Snyder, G.J.; Felser, C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater. Horizons 2014, 2, 68–75. [Google Scholar] [CrossRef]
- Rani, B.; Wani, A.F.; Sharopov, U.B.; Patra, L.; Singh, J.; Ali, A.M.; El-Rehim, A.F.A.; Khandy, S.A.; Dhiman, S.; Kaur, K. Electronic Structure-, Phonon Spectrum-, and Effective Mass-Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers. Molecules 2022, 27, 6567. [Google Scholar] [CrossRef] [PubMed]
Compounds | Phase | Total Energy |
---|---|---|
HfIrAs | Non-Magnetic | −380.37197933 |
HfIrAs | Magnetic | −380.37195502 |
Elastic Constants | HfIrAs | Ref [12] |
---|---|---|
(GPa) | 240.92 | 222.42 |
(GPa) | 144.60 | 129.84 |
(GPa) | 71.71 | 94.20 |
B (GPa) | 176.71 | 156.20 |
G (GPa) | 61.14 | 70.83 |
E (GPa) | 164.44 | 185.26 |
2.89 | 2.27 | |
n | 0.34 | 0.31 |
A | 1.49 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamgbose, M.K.; Ayedun, F.; Solola, G.T.; Musari, A.A.; Kenmoe, S.; Adebayo, G.A. Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Topological Semi-Metal HfIrAs from First-Principles Calculations. Crystals 2023, 13, 37. https://doi.org/10.3390/cryst13010037
Bamgbose MK, Ayedun F, Solola GT, Musari AA, Kenmoe S, Adebayo GA. Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Topological Semi-Metal HfIrAs from First-Principles Calculations. Crystals. 2023; 13(1):37. https://doi.org/10.3390/cryst13010037
Chicago/Turabian StyleBamgbose, Muyiwa Kehinde, Funmilayo Ayedun, Gbenro Timothy Solola, Abolore Adebayo Musari, Stephane Kenmoe, and Gboyega Augustine Adebayo. 2023. "Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Topological Semi-Metal HfIrAs from First-Principles Calculations" Crystals 13, no. 1: 37. https://doi.org/10.3390/cryst13010037
APA StyleBamgbose, M. K., Ayedun, F., Solola, G. T., Musari, A. A., Kenmoe, S., & Adebayo, G. A. (2023). Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Topological Semi-Metal HfIrAs from First-Principles Calculations. Crystals, 13(1), 37. https://doi.org/10.3390/cryst13010037