Facile Adjustment of Exposed Crystal Facet of Hematite Derived-From Goethite to Enhance Cr (VI) Sorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterizations
2.2. Removal of Cr (VI)
2.3. Transport of Cr (VI)
2.4. Cr K-Edge EXAFS Spectroscopy
2.5. Methods of Molecular Simulation
2.6. Simulation of Cr (VI) Transport
3. Results and Discussion
3.1. Characterization of Goethite and Calcined Product
3.2. Adsorption Isotherm
3.3. Adsorption Kinetics
3.4. The Local Coordination Environment
3.5. Molecular Simulation
3.6. Column Transport of Cr (VI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mekatel, H.; Amokrane, S.; Bellal, B.; Trari, M.; Nibou, D. Photocatalytic reduction of Cr (VI) on nanosized Fe2O3 supported on natural Algerian clay: Characteristics, kinetic and thermodynamic study. Chem. Eng. J. 2012, 200, 611–618. [Google Scholar] [CrossRef]
- Chen, K.; Bocknek, L.; Manning, B. Oxidation of Cr (III) to Cr (VI) and production of Mn (II) by synthetic manganese (IV) oxide. Crystals 2021, 11, 443. [Google Scholar] [CrossRef]
- Khan, T.; Isa, M.H.; Ul Mustafa, M.R.; Yeek-Chia, H.; Baloo, L.; Sabariah, B.A.M.; Teh Saeed, M.O. Cr (VI) adsorption from aqueous solution by an agricultural wastebased carbon. RSC Adv. 2016, 6, 56365–56374. [Google Scholar] [CrossRef]
- O’Brien, P.; Kortenkamp, A. The chemistry underlying chromate toxicity. Transition Met. Chem. 1995, 20, 636–642. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Investigation of chromate coordination on ferrihydrite by in Situ ATR-FTIR spectroscopy and theoretical frequency calculations. Environ. Sci. Technol. 2012, 46, 5851–5858. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xia, L.; Li, J.; Dai, M.; Yang, G.; Song, S. Adsorption of As (III) on porous hematite synthesized from goethite concentrate. Chemosphere 2017, 169, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Mitar, I.; Guć, L.; Soldin, Ž. Rapid microwave method for synthesis of iron oxide particles under specific conditions. Crystals 2021, 11, 383. [Google Scholar] [CrossRef]
- Chahal, S.; Kumar, A.; Kumar, P. Zn doped α-Fe2O3: An efficient material for UV driven photocatalysis and electrical conductivity. Crystals 2020, 10, 273. [Google Scholar]
- Fendorf, S.E. Surface reactions of chromium in soils and waters. Geoderma 1995, 67, 55–71. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, X.; Peacock, C.L.; Zhang, S.; Yin, H. Adsorption of Cr (VI) on Al-substituted hematite and its reduction and retention in the presence of Fe2+ under conditions similar to subsurface soil environments. J. Hazard. Mater. 2020, 390, 122014. [Google Scholar] [CrossRef]
- Huang, X.; Hou, X.; Song, F.; Zhao, J.; Zhang, L. Ascorbate induced facet dependent reductive dissolution of hematite nanocrystals. J. Phys. Chem. C. 2017, 121, 1113–1121. [Google Scholar] [CrossRef]
- Huang, X.; Hou, X.; Zhang, X.; Rosso, K.; Zhang, L. Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environ. Sci. Nano 2018, 5, 1790–1806. [Google Scholar] [CrossRef]
- Huang, J.; Jones, A.; Waite, T.; Chen, Y.; Huang, X.; Rosso, K.; Kappler, A.; Mansor, M.; Tratnyek, P.; Zhang, H. Fe (II) redox chemistry in the environment. Chem. Rev. 2021, 121, 8161–8233. [Google Scholar] [CrossRef]
- Catalano, J.G.; Fenter, P.; Park, C. Water ordering and surface relaxations at the hematite (110)-water interface. Geochim. Cosmochim. Acta. 2009, 73, 2242–2251. [Google Scholar] [CrossRef]
- Catalano, J.G. Weak interfacial water ordering on isostructural hematite and corundum (001) surfaces. Geochim. Cosmochim. Acta. 2011, 75, 2062–2071. [Google Scholar] [CrossRef]
- Komárek, M.; Koretsky, C.M.; Stephen, K.J.; Alessi, D.S.; Chrastný, V. Competitive adsorption of Cd (II), Cr (VI), and Pb (II) onto nanomaghemite: A spectroscopic and modeling approach. Environ. Sci. Technol. 2015, 49, 12851–12859. [Google Scholar] [CrossRef] [PubMed]
- Noerpel, M.R.; Sang, S.L.; Lenhart, J.J. X-ray analyses of lead adsorption on the (001), (110), and (012) hematite surfaces. Environ. Sci. Technol. 2016, 50, 12283–12291. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, M.; Xiong, J.; Hou, J.; Wang, X.; Tan, W. Al-substitution-induced defect sites enhance adsorption of Pb2+ on hematite. Environ. Sci.: Nano. 2019, 6, 1323–1339. [Google Scholar] [CrossRef]
- Huang, X.; Hou, X.; Song, F.; Zhao, J.; Zhang, L. Facet-dependent Cr (VI) adsorption of hematite nanocrystals. Environ. Sci. Technol. 2016, 50, 1964. [Google Scholar] [CrossRef]
- Yan, L.; Yang, K.; Shan, R. Calcined ZnAl- and Fe3O4/ZnAl-layered double hydroxides for efficient removal of Cr (VI) from aqueous solution. RSC Adv. 2015, 5, 96495. [Google Scholar] [CrossRef]
- Ai, L.; Huang, H.; Chen, Z.; Xing, W.; Jiang, J. Activated carbon/CoFe2O4 composites: Facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem. Eng. J. 2010, 156, 243–249. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Grajales-Mesa, S.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Faisal AA, H.; Sulaymon, A.H.; Khaliefa, Q.M. A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int. J. Environ. Sci. Technol. 2017, 4, 1–16. [Google Scholar] [CrossRef]
- Sungworawongpana, S.; Pengprecha, S. Calcination effect of diatomite to chromate adsorption. Procedia. Eng. 2011, 8, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, J.; Qian, G.; Ren, Z.; Xu, Z.P.; Wu, Y.; Liu, Q.; Qiao, S. Effective Cr (VI) removal from simulated groundwater through the hydrotalcite-derived adsorbent. Ind. Eng. Chem. Res. 2010, 49, 2752–2758. [Google Scholar] [CrossRef]
- Dai, M.; Xia, L.; Song, S.; Peng, C.; Valdivieso, L. Adsorption of As (V) inside the pores of porous hematite in water. J. Hazard. Mater. 2016, 307, 312–317. [Google Scholar] [CrossRef]
- Dorau, K.; Pohl, L.; Henke, C.; Hschen, C.; Mueller, C.W. Soil organic matter and phosphate sorption on natural and synthetic Fe oxides under in situ conditions. Environ. Sci. Technol. 2019, 53, 13081–13087. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Zou, X.; Qing, C.; Frost, R.L. Thermal treatment of natural goethite: Thermal transformation and physical properties. Thermochimica. Acta. 2013, 568, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, R.; James, B. Behavior of chromium in soils: III. Oxidation 1. J. Environ. Qual. 1979, 8, 31–35. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. Athena, artemis, hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Rehr, J.J.; Leon, J.; Zabinsky, S.I.; Albers, R.C. Theoretical X-Ray absorption fine-structure standards. J. Am. Chem. Soc. 1991, 113, 5135. [Google Scholar] [CrossRef]
- Ahmad, Z.U.; Chao, B.; Konggidinata, M.I. Molecular simulation and experimental validation of resorcinol adsorption on Ordered Mesoporous Carbon (OMC). J. Hazard. Mater. 2018, 354, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Simunek, J.; Genuchten MT, V.; Sejna, M. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Univ. Calif.-Riverside Res. Rep. 2005, 3, 1–240. [Google Scholar]
- Patterson, A.L. The Scherrer Formula for X-Ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, J.; Owens, G.; Chen, Z. Removal of Cr (VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. J. Clean. Prod. 2018, 176, 929–936. [Google Scholar]
- Luxton, T.P.; Eick, M.J.; Rimstidt, D.J. The role of silicate in the adsorption/desorption of Arsenite on goethite. Chem. Geo. 2008, 252, 125–135. [Google Scholar] [CrossRef]
- Rahimi, S.; Moattari, R.M.; Rajabi, L.; Derakhshan, A.A.; Keyhani, M. Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J. Ind. Eng. Chem. 2015, 23, 33–43. [Google Scholar] [CrossRef]
- Sk, A.; Sme, B. Adsorption of chromium (VI) onto natural mesoporous goethite: Effect of calcination temperature. Groundw. Sustain. Dev. 2019, 9, 100250. [Google Scholar]
- Poudel, M.B. Novel insight into the adsorption of Cr (VI) and Pb (II) ions by MOF derived Co-Al layered double hydroxide @hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312. [Google Scholar] [CrossRef]
- Varanda, L.C.; Morales, M.P.; Jafelicci Jr, M.; Serna, C.J. Monodispersed spindle-type goethite nanoparticles from Fe III solutions. J. Mater. Chem. 2002, 12, 3649–3653. [Google Scholar] [CrossRef]
- Bekkar, D.; Meftah, Y.; Benhaoua, B.; Rahal, A.; Benhaoua, A.; Hamzaoui, A.H. Synthesis, Characterization, and antibacterial activity of cobalt doped (α-Fe2O3) thin films. J. Optoelectron. Biome. 2020, 12, 33–42. [Google Scholar]
- Oulego, P.; Villa-García, M.; Laca, A.; Diaz, M. The effect of the synthetic route on the structural, textural, morphological and catalytic properties of iron (III) oxides and oxyhydroxides. Dalton. Trans. 2016, 45, 9446–9459. [Google Scholar] [CrossRef] [PubMed]
- Sangwichien, C.; Aranovich, G.L.; Donohue, M.D. Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloid. Surf. A. Phys. Eng. Aspect. 2002, 206, 313–320. [Google Scholar] [CrossRef]
- Nemr, A.E.; Khaled, A.; Abdelwahab, O.; El-Sikail, A. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J. Hazard. Mater. 2008, 152, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, Y.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr (VI) removal. Chem. Eng. J. 2013, 221, 204–213. [Google Scholar] [CrossRef]
- Hyder AH, M.G.; Begum, S.A.; Egiebor, N.O. Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. J. Environ. Chem. Eng. 2015, 3, 1329–1336. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Xu, C.; Sun, D.; Wang, Q.; Gu, H.; Zhang, X.; Weeks, B.; Hopper, J. Polyaniline coating with various substrates for hexavalent chromium removal. Appl. Surf. 2015, 334, 7–14. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, S.; Ding, D.; Chen, J.; Zhang, Z. Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. J. Colloid. Interface. Sci. 2013, 395, 198–204. [Google Scholar] [CrossRef]
- Adegoke, H.I.; Amooadekola, F.; Fatoki, O.S.; Ximba, B.J. Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean. J. Chem. Eng. 2014, 31, 142–154. [Google Scholar] [CrossRef]
- Omar, A.; Charlotte, H.; Mohammed, A.; Allal, L.B.; Marmier, N. Sorption of Cr (VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 2010, 174, 616–622. [Google Scholar]
- Picazo-Rodríguez, N.G.; Carrillo-Pedroza, F.R.; Soria-Aguilar, M.J. Use of thermally modified jarosite for the removal of hexavalent chromium by adsorption. Crystals 2022, 12, 80. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of solution substances. K. Sven. Vetensk. Handl. Band 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Fendorf, S.; Eick, M.J.; Grossl, P.; Sparks, D.L. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 1997, 31, 315–320. [Google Scholar] [CrossRef]
- Pandya, K.I. Multiple-scattering effects in X-ray-absorption fine structure: Chromium in a tetrahedral configuration. Phys. Rev. B 1994, 50, 15509–15515. [Google Scholar] [CrossRef]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochimica Cosmochimica Acta. 2014, 138, 146–157. [Google Scholar] [CrossRef]
- Tang, S.; Ke, Y.; Lo, I. Column study of Cr (VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil. J. Contam. Hydrol. 2011, 125, 39–46. [Google Scholar] [CrossRef]
- Li, Z. Chromate transport through surfactant-modified zeolite columns. Groundw. Monit. Remed. 2010, 26, 117–124. [Google Scholar] [CrossRef]
- Lv, G.; Li, Z.; Jiang, W.T.; Ackley, C.; Demarco, N. Removal of Cr (VI) from water using Fe (II)-modified natural zeolite. Chem. Eng. Res. Design. 2014, 92, 384–390. [Google Scholar] [CrossRef]
- Du, G.; Li, Z.; Liao, L.; Hanson, R.; Leick, S.; Hoeppner, N.; Jiang, W.T. Cr (VI) retention and transport through Fe (III)-coated natural zeolite. J. Hazard. Mater. 2012, 221, 118–123. [Google Scholar] [CrossRef] [PubMed]
Sample | 25 °C | 150 °C | 250 °C | 350 °C | 450 °C | 550 °C | |
---|---|---|---|---|---|---|---|
Surface Area | (m2/g) | 36.6 | 81.2 | 92.6 | 124.4 | 115.0 | 114.0 |
Pore Volume | (cm3/g) | 0.033 | 0.086 | 0.129 | 0.216 | 0.060 | 0.065 |
Pore Size | (nm) | 1.8 | 2.4 | 5.0 | 8.3 | 3.5 | 3.0 |
Column | αLa | Kb | Hc | Smd | C0 | μLe | R2 |
---|---|---|---|---|---|---|---|
(cm) | (L/g) | (L/g) | (mg/g) | (mg/L) | (h−1) | ||
Hematite | 23 | 373 | 0.151 | 2.67 | 5 | 0.0018 | 0.9472 |
Hematite | 2.6 | 1622 | 0.122 | 1.30 | 20 | 0.0020 | 0.9894 |
Batch | 0.2 | 2.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lv, G.; Wu, L.; Li, Z.; Liao, L. Facile Adjustment of Exposed Crystal Facet of Hematite Derived-From Goethite to Enhance Cr (VI) Sorption. Crystals 2023, 13, 79. https://doi.org/10.3390/cryst13010079
Li Y, Lv G, Wu L, Li Z, Liao L. Facile Adjustment of Exposed Crystal Facet of Hematite Derived-From Goethite to Enhance Cr (VI) Sorption. Crystals. 2023; 13(1):79. https://doi.org/10.3390/cryst13010079
Chicago/Turabian StyleLi, Yuxin, Guocheng Lv, Limei Wu, Zhaohui Li, and Libing Liao. 2023. "Facile Adjustment of Exposed Crystal Facet of Hematite Derived-From Goethite to Enhance Cr (VI) Sorption" Crystals 13, no. 1: 79. https://doi.org/10.3390/cryst13010079
APA StyleLi, Y., Lv, G., Wu, L., Li, Z., & Liao, L. (2023). Facile Adjustment of Exposed Crystal Facet of Hematite Derived-From Goethite to Enhance Cr (VI) Sorption. Crystals, 13(1), 79. https://doi.org/10.3390/cryst13010079