Phase Relations of Ni2In-Type and CaC2-Type Structures Relative to Fe2P-Type Structure of Titania at High Pressure: A Comparative Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Phase Stability and Equation of State
3.2. Enthalpy Difference and Volume Collapse across Phase Transitions
3.3. Band Gap Calculations at the Transition Pressures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X. Applications of Titanium Dioxide Materials. In Titanium Dioxide—Advances and Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Basheer, C. Application of Titanium Dioxide-Graphene Composite Material for Photocatalytic Degradation of Alkylphenols. J. Chem. 2013, 2013, 456586. [Google Scholar] [CrossRef] [Green Version]
- Nishio-Hamane, D.; Shimizu, A.; Nakahira, R.; Niwa, K.; Sano-Furukawa, A.; Okada, T.; Yagi, T.; Kikegawa, T. The Stability and Equation of State for the Cotunnite Phase of TiO2 up to 70 GPa. Phys. Chem. Miner. 2009, 37, 129–136. [Google Scholar] [CrossRef]
- Swamy, V.; Kuznetsov, A.Y.; Dubrovinsky, L.S.; Kurnosov, A.; Prakapenka, V.B. Unusual Compression Behavior of Anatase TiO2 Nanocrystals. Phys. Rev. Lett. 2009, 103, 75505. [Google Scholar] [CrossRef] [PubMed]
- Shul’ga, Y.M.; Matyushenko, D.V.; Golyshev, A.A.; Shakhrai, D.V.; Molodets, A.M.; Kabachkov, E.N.; Kurkin, E.N.; Domashnev, I.A. Phase Transformations in Nanostructural Anatase TiO2 under Shock Compression Conditions Studied by Raman Spectroscopy. Tech. Phys. Lett. 2010, 36, 841–843. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, M.; Wu, W. Mechanical Properties, Hardness and Electronic Structures of New Post-Cotunnite Phase (Fe2P-Type) of TiO2. Phys. B Condens. Matter 2014, 433, 48–54. [Google Scholar] [CrossRef]
- Wang, Z.; Saxena, S.K. Raman Spectroscopic Study on Pressure-Induced Amorphization in Nanocrystalline Anatase (TiO2). Solid State Commun. 2001, 118, 75–78. [Google Scholar] [CrossRef]
- Gerward, L.; Olsen, J.S. Post-Rutile High-Pressure Phases in TiO2. J. Appl. Crystallogr. 1997, 30, 259–264. [Google Scholar] [CrossRef]
- Wang, Z.; Saxena, S.K.; Pischedda, V.; Liermann, H.P.; Zha, C.S. X-Ray Diffraction Study on Pressure-Induced Phase Transformations in Nanocrystalline Anatase/Rutile (TiO2). J. Phys. Condens. Matter 2001, 13, 8317–8323. [Google Scholar] [CrossRef]
- Swamy, V.; Dubrovinsky, L.S.; Dubrovinskaia, N.A.; Langenhorst, F.; Simionovici, A.S.; Drakopoulos, M.; Dmitriev, V.; Weber, H.-P. Size Effects on the Structure and Phase Transition Behavior of Baddeleyite TiO2. Solid State Commun. 2005, 134, 541–546. [Google Scholar] [CrossRef]
- Dubrovinskaia, N.A.; Dubrovinsky, L.S.; Ahuja, R.; Prokopenko, V.B.; Dmitriev, V.; Weber, H.-P.; Osorio-Guillen, J.M.; Johansson, B. Experimental and Theoritical Identification of a New High-Pressure TiO2 Polymorph. Phys. Rev. Lett. 2001, 87, 275501. [Google Scholar] [CrossRef]
- Caravaca, M.A.; Mino, J.C.; Perez, V.J.; Casali, R.A.; Ponce, C.A. Ab Initio Study of the Elastic Properties of Single and Polycrystal TiO2, ZrO2 and HfO2 in the Cotunnite Structure. J. Phys. Condens. Matter 2009, 21, 15501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hearne, G.R.; Zhao, J.; Dawe, A.M.; Pischedda, V.; Maaza, M.; Nieuwoudt, M.K.; Kibasomba, P.; Nemraoui, O.; Comins, J.D. Effect of Grain Size on Structural Transitions in Anatase TiO2: A Raman Spectroscopy Study at High Pressure. Phys. Rev. B 2004, 70, 134102. [Google Scholar] [CrossRef]
- Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; McMillan, P.F.; Prakapenka, V.B.; Shen, G.; Muddle, B.C. Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO2. Phys. Rev. Lett. 2006, 96, 135702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, R.; Dubrovinsky, L.S. High-Pressure Structural Phase Transitions in TiO2 and Synthesis of the Hardest Known Oxide. J. Phys. Condens. Matter 2002, 14, 10995–10999. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Zhang, J.; Xu, H.; Wang, L.; Luo, S.; Daemen, L.L. In Situ Phase Transition Study of Nano- and Coarse-Grained TiO2 under High Pressure/Temperature Conditions. J. Phys. Condens. Matter 2008, 20, 125224. [Google Scholar] [CrossRef]
- Flank, A.-M.; Lagarde, P.; Itie, J.-P.; Hearne, G.R. Pressure-Induced Amorphization and a Possible Polyamorphism Transition in Nanosized TiO2: An x-Ray Absorption Spectroscopy Study. Phys. Rev. B 2008, 77, 224112. [Google Scholar] [CrossRef]
- Arlt, T.; Bermejo, M.; Blanco, M.A.; Gerward, L.; Jiang, J.Z.; Olsen, J.S.; Recio, J.M. High-Pressure Polymorphs of Anatase TiO2. Phys. Rev. B 2000, 61, 14414. [Google Scholar] [CrossRef] [Green Version]
- Mattesini, M.; de Almeida, J.S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. High-Pressure and High-Temperature Synthesis of the Cubic TiO2 Polymorph. Phys. Rev. B 2004, 70, 212101. [Google Scholar] [CrossRef]
- Swamy, V.; Muddle, B.C. Ultrastiff Cubic TiO2 Identified via First-Principles Calculations. Phys. Rev. Lett. 2007, 98, 35502. [Google Scholar] [CrossRef]
- Swamy, V.; Dubrovinskaia, N.A.; Dubrovinsky, L.S. Compressibility of Baddeleyite-Type TiO2 from Static Compression to 40 GPa. J. Alloys Compd. 2002, 340, 46–48. [Google Scholar] [CrossRef]
- Muscat, J.; Swamy, V.; Harrison, N.M. First-Principles Calculations of the Phase Stability of TiO2. Phys. Rev. B 2002, 65, 224112. [Google Scholar] [CrossRef]
- Lyakhov, A.O.; Oganov, A.R. Evolutionary Search for Superhard Materials: Methodology and Applications to Forms of Carbon and TiO2. Phys. Rev. B 2011, 84, 92103. [Google Scholar] [CrossRef] [Green Version]
- Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. Compressibility of Nanocrystalline TiO2 Anatase. Phys. Chem. C 2012, 116, 21635–21639. [Google Scholar] [CrossRef]
- Swamy, V.; Dubrovinsky, L.S.; Dubrovinskaia, N.A.; Simionovici, A.S.; Drakopoulos, M.; Dmitriev, V.; Weber, H.-P. Compression Behavior of Nanocrystalline Anatase TiO2. Solid State Commun. 2003, 125, 111–115. [Google Scholar] [CrossRef]
- Al-Khatatbeh, Y.; Lee, K.K.M. From Superhard to Hard: A Review of Transition Metal Dioxides TiO2, ZrO2, and HfO2 Hardness. J. Superhard Mater. 2014, 36, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Van Gestel, T.; Sebold, D.; Kruidhof, H.; Bouwmeester, H.J.M. ZrO2 and TiO2 Membranes for Nanofiltration and Pervaporation. Part 2. Development of ZrO2 and TiO2 Toplayers for Pervaporation. J. Memb. Sci. 2008, 318, 413–421. [Google Scholar] [CrossRef]
- Swamy, V.; Muddle, B.C. Pressure-Induced Polyamorphic Transition in Nanoscale TiO2. J. Aust. Cer. Soc. 2008, 44, 1–5. [Google Scholar]
- Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. High-Pressure Behavior of TiO2 as Determined by Experiment and Theory. Phys. Rev. B 2009, 79, 134114. [Google Scholar] [CrossRef]
- Meng, X.; Wang, L.; Liu, D.; Wen, X.; Zhu, Q.; Goddard, W.A.; An, Q. Discovery of Fe2P-Type Ti(Zr/Hf)2O6 Photocatalysts toward Water Splitting. Chem. Mater. 2016, 28, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Dekura, H.; Tsuchiya, T.; Kuwayama, Y.; Tsuchiya, J. Theoretical and Experimental Evidence for a New Post-Cotunnite Phase of Titanium Dioxide with Significant Optical Absorption. Phys. Rev. Lett. 2011, 107, 45701. [Google Scholar] [CrossRef]
- Fu, Z.; Liang, Y.; Wang, S.; Zhong, Z. Structural Phase Transition and Mechanical Properties of TiO2 under High Pressure. Phys. Status Solidi Basic Res. 2013, 250, 2206–2214. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, J.; Zhang, S.; Yang, G.; Wang, Y. Ten-Fold Coordinated Polymorph and Metallization of TiO2 under High Pressure. RSC Adv. 2015, 5, 54253–54257. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, B.; Zhao, J. Mechanical Properties and Structural Identifications of Cubic TiO2. Phys. Rev. B 2008, 77, 94126. [Google Scholar] [CrossRef]
- Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; Caruso, R.A.; Shchukin, D.G.; Muddle, B.C. Finite-Size and Pressure Effects on the Raman Spectrum of Nanocrystalline Anatase TiO2. Phys. Rev. B 2005, 71, 184302. [Google Scholar] [CrossRef]
- Lyle, M.J.; Pickard, C.J.; Needs, R.J. Prediction of 10-Fold Coordinated TiO2 and SiO2 Structures at Multimegabar Pressures. Proc. Natl. Acad. Sci. USA 2015, 112, 6898–6901. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Yang, S.F.; Wang, Z.C.; Ahuja, R.; Johansson, B.; Liu, J.; Zou, G.T. Structural Phase Transitions in Brookite-Type TiO2 under High Pressure. Solid State Commun. 2005, 133, 49–53. [Google Scholar] [CrossRef]
- Machon, D.; Daniel, M.; Pischedda, V.; Daniele, S.; Bouvier, P.; LeFloch, S. Pressure-Induced Polyamorphism in TiO2 Nanoparticles. Phys. Rev. B 2010, 82, 140102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, J.; Zhao, Y. Strength Weakening by Nanocrystals in Ceramic Materials. Nano Lett. 2007, 7, 3196–3199. [Google Scholar] [CrossRef]
- Baty, S.R.; Burakovsky, L.; Errandonea, D. Ab Initio Phase Diagram of Copper. Crystals 2021, 11, 537. [Google Scholar] [CrossRef]
- Diaz-Anichtchenko, D.; Errandonea, D. Comparative Study of the Compressibility of M3V2O8 (M = Cd, Zn, Mg, Ni) Orthovanadates. Crystals 2022, 12, 1544. [Google Scholar] [CrossRef]
- Durandurdu, M. Novel High-Pressure Phase of ZrO2: An Ab Initio Prediction. J. Solid State Chem. 2015, 230, 233–236. [Google Scholar] [CrossRef]
- Al-Khatatbeh, Y.; Tarawneh, K.; Hamad, B. The Prediction of a New High-Pressure Phase of Hafnia Using First-Principles Computations. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012006. [Google Scholar] [CrossRef]
- Al-Taani, H.; Tarawneh, K.; Al-Khatatbeh, Y.; Hamad, B. The High-Pressure Stability of Ni2In-Type Structure of ZrO2 with Respect to OII and Fe2P-Type Phases: A First-Principles Study. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012016. [Google Scholar] [CrossRef]
- Kokalj, A. Computer Graphics and Graphical User Interfaces as Tools in Simulations of Matter at the Atomic Scale. Comput. Mater. Sci. 2003, 28, 155–168. [Google Scholar] [CrossRef]
- Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. Phase Diagram up to 105 GPa and Mechanical Strength of HfO2. Phys. Rev. B 2010, 82, 144106. [Google Scholar] [CrossRef] [Green Version]
- Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. Phase Relations and Hardness Trends of ZrO2 Phases at High Pressure. Phys. Rev. B 2010, 81, 214102. [Google Scholar] [CrossRef]
- Al-Khatatbeh, Y.; Tarawneh, K.; Al-Taani, H.; Lee, K.K.M. Theoretical and Experimental Evidence for a Post-Cotunnite Phase Transition in Hafnia at High Pressures. J. Superhard Mater. 2018, 40, 374–383. [Google Scholar] [CrossRef]
- Nishio-Hamane, D.; Dekura, H.; Seto, Y.; Yagi, T. Theoretical and Experimental Evidence for the Post-Cotunnite Phase Transition in Zirconia at High Pressure. Phys. Chem. Miner. 2015, 42, 385–392. [Google Scholar] [CrossRef]
- Dutta, R.; Kiefer, B.; Greenberg, E.; Prakapenka, V.B.; Duffy, T.S. Ultrahigh-Pressure Behavior of AO2 (A = Sn, Pb, Hf) Compounds. J. Phys. Chem. C 2019, 123, 27735–27741. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Birch, F. Elasticity and Constitution of the Earth’s Interior. J. Geophys. Res. 1952, 57, 227–234. [Google Scholar] [CrossRef]
- Bandiello, E.; Errandonea, D.; Martinez-Garcia, D.; Santamaria-Perez, D.; Manjón, F.J. Effects of High Pressure on the Structural, Vibrational, and Electronic Properties of Monazite-Type PbCrO 4. Phys. Rev. B 2012, 85, 024108. [Google Scholar] [CrossRef] [Green Version]
- Borlido, P.; Schmidt, J.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Exchange-Correlation Functionals for Band Gaps of Solids: Benchmark, Reparametrization and Machine Learning. npj Comput. Mater. 2020, 6, 96. [Google Scholar] [CrossRef]
Phase | Equation of State | Reference | ||
---|---|---|---|---|
V0 (Å3) | K0 (GPa) | K0’ | ||
Fe2P-TiO2 | 25.7 | 272.1 | 4 | [31] |
25.53 | 287 | 4.1 | [32] | |
25.59 (0.03) | 284 (2) | 4 (fixed) | This work | |
Fe2P-ZrO2 | 30.17 | 248 | 3.76 | [42] |
30.94 (0.03) | 272 (2) | 4 (fixed) | [44] | |
30.34 | 272 | 4 (fixed) | [48] | |
Fe2P-HfO2 | 29.73 (0.02) | 282 (2) | 4 (fixed) | [43] |
29.69 (0.03) | 288 (2) | 4 (fixed) | [48] | |
29.8 | 284 | 4.2 | [50] | |
Ni2In-TiO2 | 27.82 (0.19) | 173 (6) | 4 (fixed) | This work |
Ni2In-ZrO2 | 29.21 | 239 | 3.86 | [42] |
31.81 (0.13) | 200 (5) | 4 (fixed) | [44] | |
Ni2In-HfO2 | 30.49 (0.14) | 213 (6) | 4 (fixed) | [43] |
CaC2-TiO2 | 25.23 (0.04) | 264 (3) | 4 (fixed) | This work |
Phase Transition | Transition Pressure (GPa) | Reference |
---|---|---|
Fe2P → Ni2In | 564 GPa | This work |
Fe2P → CaC2 | 647 GPa 689 GPa 664 GPa | [36] [33] This work |
Phase Transition | ΔH/ΔP | Band Gap Difference (eV) | Volume Change (%) | Coordination Number Change | |
---|---|---|---|---|---|
eV·GPa−1 (×10−4) | kJ·mol−1·GPa−1 | ||||
Fe2P → Ni2In | −48.102 | −0.46411 | 0.04 | 5.6 | 2 |
Fe2P → CaC2 | −28.135 | −0.27416 | 0 | 3.7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarawneh, K.; Al-Khatatbeh, Y. Phase Relations of Ni2In-Type and CaC2-Type Structures Relative to Fe2P-Type Structure of Titania at High Pressure: A Comparative Study. Crystals 2023, 13, 9. https://doi.org/10.3390/cryst13010009
Tarawneh K, Al-Khatatbeh Y. Phase Relations of Ni2In-Type and CaC2-Type Structures Relative to Fe2P-Type Structure of Titania at High Pressure: A Comparative Study. Crystals. 2023; 13(1):9. https://doi.org/10.3390/cryst13010009
Chicago/Turabian StyleTarawneh, Khaldoun, and Yahya Al-Khatatbeh. 2023. "Phase Relations of Ni2In-Type and CaC2-Type Structures Relative to Fe2P-Type Structure of Titania at High Pressure: A Comparative Study" Crystals 13, no. 1: 9. https://doi.org/10.3390/cryst13010009
APA StyleTarawneh, K., & Al-Khatatbeh, Y. (2023). Phase Relations of Ni2In-Type and CaC2-Type Structures Relative to Fe2P-Type Structure of Titania at High Pressure: A Comparative Study. Crystals, 13(1), 9. https://doi.org/10.3390/cryst13010009