Pore-Scale Investigation of Mass Transport in Compressed Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Methodology
2.1. Two-Dimensional Single-Phase Multicomponent Fluid Flow LB Model
2.2. Boundary Conditions
2.3. Reconstruction of GDL
2.3.1. Stochastic Reconstruction of Fiber Skeleton
2.3.2. Addition of Binder
- Calculate the shortest distance dc from each lattice to the carbon fiber;
- Select an initial value rc as the circle radius, draw circles with radius rc at the lattices where dc ≥ rc, and mark the area covered by the circles;
- The area not covered by the circles is marked as binder, and the binder volume is counted;
- Decrease rc if the counted binder volume is greater than the preset value, increase rc if it is less, and repeat steps (2) (3) until the preset binder volume is reached.
2.3.3. Compression Model
2.4. Computational Domain
3. Results and Discussion
3.1. Effect of Binder on Mass Transport within Uncompressed GDL
3.2. Effect of Binder and Compression on Oxygen Distribution
3.3. Effect of Binder and Compression on Water Vapor Distribution
3.4. Effect of Binder and Compression on the Local Current Density Distribution
4. Conclusions
- The increase in binder volume fraction led to more block and chain structures that blocked the gas transport throat and closed pores that are not favorable for gas transport;
- For uncompressed GDLs, the increase in binder volume fraction led to an increase in oxygen-poor and water-vapor-enriched regions and a decrease in average current density;
- An increase in compression ratio decreased the porosity of the GDL under the rib, and mass transfer resistance increased, which led to the difficulty in supplying the oxygen being consumed. Therefore, the oxygen concentration decreased with an increase in compression ratio;
- For samples with different binder volume fractions, the higher the compression ratio, the lower the local current density.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Liao, P.; Yang, D.; Li, Z.; Li, B.; Ming, P.; Zhou, X. Liquid water transport in gas flow channels of PEMFCs: A review on numerical simulations and visualization experiments. Int. J. Hydrog. Energy 2023, 48, 10118–10143. [Google Scholar] [CrossRef]
- Liu, P.; Yang, D.; Li, B.; Zhang, C.; Ming, P. Recent progress of catalyst ink for roll-to-roll manufacturing paired with slot die coating for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2023, 48, 19666–19685. [Google Scholar] [CrossRef]
- Athanasaki, G.; AJayakumar Kannan, A.M. Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing—A review. Int. J. Hydrog. Energy 2023, 48, 2294–2313. [Google Scholar] [CrossRef]
- Mao, X.; Liu, S.; Tan, J.; Hu, H.; Lu, C.; Xuan, D. Multi-objective optimization of gradient porosity of gas diffusion layer and operation parameters in PEMFC based on recombination optimization compromise strategy. Int. J. Hydrog. Energy 2023, 48, 13294–13307. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, B.; Meng, K.; Zhou, H.; Chen, W.; Zhang, N.; Deng, Q.; Yang, G.; Tu, Z. Optimization and evaluation criteria of water-gas transport performance in wave flow channel for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 2023, 48, 20717–20733. [Google Scholar] [CrossRef]
- Simaafrookhteh, S.; Taherian, R.; Shakeri, M. Stochastic Microstructure Reconstruction of a BinderCarbon FiberExpanded Graphite Carbon Fiber Paper for PEMFCs Applications Mass Transport and Conductivity Properties. J. Electrochem. Soc. 2019, 166, F3287. [Google Scholar] [CrossRef]
- Daino, M.M.; Kandlikar, S.G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions. Int. J. Hydrog. Energy 2012, 37, 5180–5189. [Google Scholar] [CrossRef]
- Burganos, V.N.; Skouras, E.D.; Kalarakis, A.N. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives. J. Power Sources 2017, 365, 179–189. [Google Scholar] [CrossRef]
- Zamel, N.; Li, X.; Shen, J.; Becker, J.; Wiegmann, A. Estimating effective thermal conductivity in carbon paper diffusion media. Chem. Eng. Sci. 2010, 65, 3994–4006. [Google Scholar] [CrossRef]
- Kakaee, A.H.; Molaeimanesh, G.R.; Garmaroudi, M.H.E. Impact of PTFE distribution across the GDL on the water droplet removal from a PEM fuel cell electrode containing binder. Int. J. Hydrog. Energy 2018, 43, 15481–15491. [Google Scholar] [CrossRef]
- Thiedmann, R.; Hartnig, C.; Manke, I.; Schmidt, V.; Lehnert, W. Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D Graphs. J. Electrochem. Soc. 2009, 156, B1339. [Google Scholar] [CrossRef]
- Thiedmann, R.; Fleischer, F.; Hartnig, C.; Lehnert, W.; Schmidt, V. Stochastic 3D Modeling of the GDL Structure in PEMFCs Based on Thin Section Detection. J. Electrochem. Soc. 2008, 155, B391. [Google Scholar] [CrossRef]
- Nabovati, A.; Hinebaugh, J.; Bazylak, A.; Amon, C.H. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells. J. Power Sources 2014, 248, 83–90. [Google Scholar] [CrossRef]
- Simaafrookhteh, S.; Shakeri, M.; Baniassadi, M.; Sahraei, A.A. Microstructure Reconstruction and Characterization of the Porous GDLs for PEMFC Based on Fibers Orientation Distribution. Fuel Cells 2018, 18, 160–172. [Google Scholar] [CrossRef]
- Jinuntuyaa, F.; Whiteleyb, M.; Chenb, R.; Flyb, A. The effects of gas diffusion layers structure on water transportation using X-ray computed tomography based Lattice Boltzmann method. J. Power Sources 2018, 378, 53–65. [Google Scholar] [CrossRef]
- Tayarani-Yoosefabadi, Z.; Harvey, D.; Bellerive, J.; Kjeang, E. Stochastic microstructural modeling of fuel cell gas diffusion layers and numerical determination of transport properties in different liquid water saturation levels. J. Power Sources 2016, 303, 208–221. [Google Scholar] [CrossRef]
- Hannach, M.E.; Hannach, E. Stochastic Microstructural Modeling of PEFC Gas Diffusion Media. J. Electrochem. Soc. 2014, 161, F951. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, S.; Thiedmann, R.; Schmidt, V.; Lehnert, W.; Feng, X. Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells. Int. J. Heat Mass Transf. 2010, 53, 1128–1138. [Google Scholar] [CrossRef]
- Lai, T.; Qu, Z. Pore-scale parametric sensitivity analysis of liquid water transport in the gas diffusion layer of polymer electrolyte membrane fuel cell. Appl. Therm. Eng. 2023, 229, 120616. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, Z.; Xu, J.; Zhong, Z.; Xu, X. Insight into mechanism of boosted oxygen reduction reaction in mixed-conducting composite cathode of solid oxide fuel cell via a novel open-source pore-scale model. Chem. Eng. J. 2023, 469, 143854. [Google Scholar] [CrossRef]
- Shimura, T.; Nagasawa, T.; Shikazono, N.; Hanamura, K. Three-dimensional numerical simulation of oxygen isotope transport in lanthanum strontium manganese—Yttria-stabilized zirconia cathode of solid oxide fuel cell. Int. J. Hydrog. Energy 2023, 48, 19233–19247. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, X.; Xu, S.; Xie, X.; Dong, F. Numerical Simulation of Liquid Water Transport in a Multiperforated Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells. J. Energy Eng. 2023, 149, 04023005. [Google Scholar] [CrossRef]
- Ashorynejad, H.R.; Javaherdeh, K.; Van den Akker, H.E.A. The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface. Int. J. Hydrog. Energy 2016, 41, 14239–14251. [Google Scholar] [CrossRef]
- Ashorynejad, H.R.; Javaherdeh, K. Investigation of a waveform cathode channel on the performance of a PEM fuel cell by means of a pore-scale multi-component lattice Boltzmann method. J. Taiwan Inst. Chem. Eng. 2016, 66, 126–136. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Akbari, M.H. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method. Korean J. Chem. Eng. 2015, 32, 397–405. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Dahmardeh, M. Pore-scale analysis of a PEM fuel cell cathode including carbon cloth gas diffusion layer by lattice Boltzmann method. Fuel Cells 2021, 21, 208–220. [Google Scholar] [CrossRef]
- Chen, L.; Luan, H.-B.; He, Y.-L.; Tao, W.-Q. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 2012, 51, 132–144. [Google Scholar] [CrossRef]
- Nazemian, M.; Molaeimanesh, G.R. Impact of carbon paper structural parameters on the performance of a polymer electrolyte fuel cell cathode via lattice Boltzmann method. Acta Mech. Sin. 2020, 36, 367–380. [Google Scholar] [CrossRef]
- Bahoosh, R.; Jafari, M.; Bahrainian, S.S. 3-D modeling of proton exchange fuel cell cathode with a novel random generation of gas diffusion porous layer. Korean J. Chem. Eng. 2021, 38, 1703–1714. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Akbari, M.H. A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method. J. Power Sources 2014, 258, 89–97. [Google Scholar] [CrossRef]
- Becker, J.; Flückiger, R.; Flückiger, M.; Büchi, F.H.; Marone, F.; Stampanonic, M. Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy. J. Electrochem. Soc. 2009, 156, B1175. [Google Scholar] [CrossRef]
- Holzer, L.; Pecho, O.; Schumacher, J.; Marmet, P.; Stenzel, O.; Büchi, F.N.; Lamibrac, A.; Münch, B. Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: Effect of compression and anisotropy of dry GDL. Electrochim. Acta 2017, 227, 419–434. [Google Scholar] [CrossRef]
- Rama, P.; Liu, Y.; Chen, R.; Ostadi, H.; Jiang, K.; Gao, Y.; Zhang, X.; Brivio, D.; Grassini, P. A Numerical Study of Structural Change and Anisotropic Permeability in Compressed Carbon Cloth Polymer Electrolyte Fuel Cell Gas Diffusion Layers. Fuel Cells 2011, 11, 274–285. [Google Scholar] [CrossRef]
- Froning, D.; Drakselova, M.; Tocháčková, A.; Kodým, R.; Reimer, U.; Lehnert, W.; Bouzek, K. Anisotropic properties of gas transport in non-woven gas diffusion layers of polymer electrolyte fuel cells. J. Power Sources 2020, 452, 227828. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Xiao, L.; Bazylak, A.; Gao, X.; Sui, P.-C. Pore-scale modeling of gas diffusion layers: Effects of compression on transport properties. J. Power Sources 2021, 496, 229822. [Google Scholar] [CrossRef]
- Ira, Y.; Bakhshan, Y.; Khorshidimalahmadi, J. Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC. Int. J. Hydrog. Energy 2021, 46, 17397–17413. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Shojaeefard, M.H.; Moqaddari, M.R. Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells. Korean J. Chem. Eng. 2019, 36, 136–145. [Google Scholar] [CrossRef]
- Mukherjee, P.P.; Wang, C.Y.; Schulz, V.P.; Kang, Q.; Becker, J.; Wiegmann, A. Two-Phase Behavior and Compression Effect in a PEFC Gas Diffusion Medium. ECS Trans. 2009, 25, 1485–1494. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.M. Effects of rib structure and compression on liquid water transport in the gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Mech. Sci. Technol. 2022, 36, 235–246. [Google Scholar] [CrossRef]
- Sepe, M.; Satjaritanun, P.; Hirano, S.; Zenyuk, I.V.; Tippayawong, N.; Shimpalee, S. Investigating Liquid Water Transport in Different Pore Structure of Gas Diffusion Layers for PEMFC Using Lattice Boltzmann Method. J. Electrochem. Soc. 2020, 167, 104516. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, S.; Shen, Q.; Liao, J.; Jiang, Z.; Espinoza-Andaluz, M.; Su, F.; Pan, X. Numerical study on permeability of gas diffusion layer with porosity gradient using lattice Boltzmann method. Int. J. Hydrog. Energy 2021, 46, 22107–22121. [Google Scholar] [CrossRef]
- Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, S.; Shen, Q.; Su, F.; Jiang, Z.; Liao, J.; Pan, X. Pore-Scale Modeling of Mass Transport in Partially Saturated Cathode Gas Diffusion Layers of Proton Exchange Membrane Fuel Cell. Energy Fuels 2022, 36, 8422–8431. [Google Scholar] [CrossRef]
- Jeon, D.H.; Kim, H. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method. J. Power Sources 2015, 294, 393–405. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Su, F.; Li, S.; Shen, Q.; Liao, J.; Jiang, Z.; Zhang, G.; Li, Z. Cathode Electrochemical Performance of PEMFCs with Compressed Gas Diffusion Layer: A Pore-Scale Investigation. J. Electrochem. Soc. 2022, 169, 124507. [Google Scholar] [CrossRef]
- Yang, G.G.; Wang, H.; Su, F.; Li, S.; Zhang, G.; Sun, J.; Shen, Q.; Jiang, Z.; Liao, J.; Chen, P. Effect of porosity gradient in cathode gas diffusion layer on electrochemical performance of proton exchange membrane fuel cells. Korean J. Chem. Eng. 2023, 40, 1598–1605. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Width of the GC | 1000 µm |
Width of the rib | 1000 µm |
GDL thickness | 200 µm |
GDL porosity | 0.78 |
Operating temperature | 353 K |
Operating pressure | 1.5 atm |
Differential pressure between inlet and outlet | 0.01 atm |
Oxygen molar fraction at the inlet | 0.21 |
Nitrogen molar fraction at the inlet | 0.79 |
Dynamic viscosity of oxygen | 2.34 × 10−5 kg/(m·s) |
Dynamic viscosity of nitrogen | 2.01 × 10−5 kg/(m·s) |
Dynamic viscosity of water vapor | 1.20 × 10−5 kg/(m·s) |
Diffusivity of oxygen in the mixture | 1.891 × 10−5 m2/s |
Roughness coefficient | 2000 |
Reference current density | 1.3874 × 10−2 A/m2 |
Forward oxygen reduction transfer coefficients | 0.5 |
Reverse oxygen reduction transfer coefficients | 1 |
Binder volume fraction | 0, 10%, 20%, 30% |
Compression ratio | 0, 10%, 20%, 30%, 40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yang, G.; Li, S.; Shen, Q.; Su, F.; Zhang, G.; Li, Z.; Jiang, Z.; Liao, J.; Sun, J. Pore-Scale Investigation of Mass Transport in Compressed Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells. Crystals 2023, 13, 1430. https://doi.org/10.3390/cryst13101430
Wang H, Yang G, Li S, Shen Q, Su F, Zhang G, Li Z, Jiang Z, Liao J, Sun J. Pore-Scale Investigation of Mass Transport in Compressed Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells. Crystals. 2023; 13(10):1430. https://doi.org/10.3390/cryst13101430
Chicago/Turabian StyleWang, Hao, Guogang Yang, Shian Li, Qiuwan Shen, Fengmin Su, Guoling Zhang, Zheng Li, Ziheng Jiang, Jiadong Liao, and Juncai Sun. 2023. "Pore-Scale Investigation of Mass Transport in Compressed Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells" Crystals 13, no. 10: 1430. https://doi.org/10.3390/cryst13101430
APA StyleWang, H., Yang, G., Li, S., Shen, Q., Su, F., Zhang, G., Li, Z., Jiang, Z., Liao, J., & Sun, J. (2023). Pore-Scale Investigation of Mass Transport in Compressed Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells. Crystals, 13(10), 1430. https://doi.org/10.3390/cryst13101430