Alloying Element Depletion and Phase Transition in Stainless Steel 304 Induced by PEO Treatment in KOH- and TaOH-Rich Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gui, W.; Lin, J.; Hao, G.; Qu, Y.; Liang, Y.; Zhang, H. Electrolytic Plasma Processing-an Innovative Treatment for Surface Modification of 304 Stainless Steel. Sci. Rep. 2017, 7, 308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Q.; Yang, R.; Dong, C. Composition Equivalents of Stainless Steels Understood via Gamma Stabilizing Efficiency. Sci. Rep. 2021, 11, 5423. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Izawa, T.; Zhu, L.; Kuroda, K.; Okido, M. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. ACS Appl. Mater. Interfaces 2019, 11, 45489–45497. [Google Scholar] [CrossRef] [PubMed]
- Chabanon, A.; Michau, A.; Schlegel, M.L.; Gündüz, D.C.; Puga, B.; Miserque, F.; Schuster, F.; Maskrot, H.; Pareige, C.; Cadel, E.; et al. Surface Modification of 304L Stainless Steel and Interface Engineering by HiPIMS Pre-Treatment. Coatings 2022, 12, 727. [Google Scholar] [CrossRef]
- Rabadzhiyska, S.; Kotlarski, G.; Shipochka, M.; Rafailov, P.; Ormanova, M.; Strijkova, V.; Dimcheva, N.; Valkov, S. Duplex Surface Modification of 304-L SS Substrates by an Electron-Beam Treatment and Subsequent Deposition of Diamond-like Carbon Coatings. Coatings 2022, 12, 401. [Google Scholar] [CrossRef]
- Thangaraj, B.; TS Nellaiappan, S.N.; Kulandaivelu, R.; Lee, M.H.; Nishimura, T. A Facile Method to Modify the Characteristics and Corrosion Behavior of 304 Stainless Steel by Surface Nanostructuring toward Biomedical Applications. ACS Appl. Mater. Interfaces 2015, 7, 17731–17747. [Google Scholar] [CrossRef]
- Fahad, N.D.; Radhi, N.S.; Al-Khafaji, Z.S.; Diwan, A.A. Surface Modification of Hybrid Composite Multilayers Spin Cold Spraying for Biomedical Duplex Stainless Steel. Heliyon 2023, 9, e14103. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to Plasma Electrolytic Oxidation—An Overview of the Process and Applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Torrento, J.E.; Grandini, C.R.; Sousa, T.S.P.; Rocha, L.A.; Gonçalves, T.M.; Sottovia, L.; Rangel, E.C.; Cruz, N.C.; Correa, D.R.N. Bulk and Surface Design of MAO-Treated Ti-15Zr-15Mo-Ag Alloys for Potential Use as Biofunctional Implants. Mater. Lett. 2020, 269, 127661. [Google Scholar] [CrossRef]
- Moga, S.; Malinovschi, V.; Marin, A.; Coaca, E.; Negrea, D.; Craciun, V.; Lungu, M. Mechanical and Corrosion-Resistant Coatings Prepared on AZ63 Mg Alloy by Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2023, 462, 129464. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Chen, C.; Zhao, Z. Review of the Biocompatibility of Micro-Arc Oxidation Coated Titanium Alloys. Mater. Des. 2015, 85, 640–652. [Google Scholar] [CrossRef]
- Kuroda, P.A.B.; Rafael, F.M.; Rossi, M.C.; Correa, D.R.N.; Grandini, C.R.; Afonso, C.R.M. Influence of Zr Addition in β Ti-25Ta-XZr Alloys on Oxide Formation By. Vacuum 2023, 217, 112541. [Google Scholar] [CrossRef]
- Chaharmahali, R.; Fattah-alhosseini, A.; Esfahani, H. Increasing the In-Vitro Corrosion Resistance of AZ31B-Mg Alloy via Coating with Hydroxyapatite Using Plasma Electrolytic Oxidation. J. Asian Ceram. Soc. 2020, 8, 39–49. [Google Scholar] [CrossRef]
- Nie, X.; Cai, R.; Zhao, C.; Sun, J.; Zhang, J.; Matthews, D.T.A. Advancement of Plasma Electrolytic Oxidation towards Non-Valve Metals. Surf. Coat. Technol. 2022, 442, 128403. [Google Scholar] [CrossRef]
- Heo, J.; Lee, J.; Kim, S.; Alfantazi, A.; Cho, S.O. Corrosion Resistance of Austenitic Stainless Steel Using Cathodic Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2023, 462, 129448. [Google Scholar] [CrossRef]
- Chellappandian, R.; Jena, G.; Neelakantan, L.; Adlakha, I. Development of Multi-Functional Coating for Ferritic Steels Using Cathodic Plasma Electrolytic Nitriding. JOM 2023, 7, 9–13. [Google Scholar] [CrossRef]
- Jin, X.; Wang, B.; Xue, W.; Du, J.; Wu, X.; Wu, J. Characterization of Wear-Resistant Coatings on 304 Stainless Steel Fabricated by Cathodic Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2013, 236, 22–28. [Google Scholar] [CrossRef]
- Ma, C.; Liu, J.; Zhu, X.; Xue, W.; Yan, Z.; Cheng, D.; Fu, J.; Ma, S. Anticorrosive Non-Crystalline Coating Prepared by Plasma Electrolytic Oxidation for Ship Low Carbon Steel Pipes. Sci. Rep. 2020, 10, 15675. [Google Scholar] [CrossRef]
- Domínguez-Jaimes, L.P.; Arenas, M.A.; Conde, A.; Escobar-Morales, B.; Álvarez-Méndez, A.; Hernández-López, J.M. Growth of Anodic Layers on 304L Stainless Steel Using Fluoride Free Electrolytes and Their Electrochemical Behavior in Chloride Solution. Materials 2022, 15, 1892. [Google Scholar] [CrossRef]
- Marcuz, N.; Ribeiro, R.P.; Rangel, E.C.; Cristino, N.; Rafael, D.; Correa, N. The Effect of PEO Treatment in a Ta-Rich Electrolyte on the Surface and Corrosion Properties of Low-Carbon Steel for Potential Use as a Biomedical Material. Metals 2023, 13, 520. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a Graphical User Interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004; pp. 86–748. [Google Scholar]
- Hutsaylyuk, V.; Student, M.; Posuvailo, V.; Student, O.; Sirak, Y.; Hvozdets’kyi, V.; Maruschak, P.; Veselivska, H. The Properties of Oxide-Ceramic Layers with Cu and Ni Inclusions Synthesizing by PEO Method on Top of the Gas-Spraying Coatings on Aluminium Alloys. Vacuum 2020, 179, 109514. [Google Scholar] [CrossRef]
- Schwartz, A.; Kossenko, A.; Zinigrad, M.; Danchuk, V.; Sobolev, A. Cleaning Strategies of Synthesized Bioactive Coatings by PEO on Ti-6Al-4V Alloys of Organic Contaminations. Materials 2023, 16, 4624. [Google Scholar] [CrossRef] [PubMed]
- Orsetti, F.R.; Bukman, L.; Santos, J.S.; Nagay, B.E.; Rangel, E.C.; Cruz, N.C. Methylene Blue and Metformin Photocatalytic Activity of CeO2-Nb2O5 Coatings Is Dependent on the Treatment Time of Plasma Electrolytic Oxidation on Titanium. Appl. Surf. Sci. Adv. 2021, 6, 100143. [Google Scholar] [CrossRef]
- Molaei, M.; Nouri, M.; Babaei, K.; Fattah-Alhosseini, A. Improving Surface Features of PEO Coatings on Titanium and Titanium Alloys with Zirconia Particles: A Review. Surf. Interfaces 2021, 22, 100888. [Google Scholar] [CrossRef]
- Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma Electrolytic Oxidation (PEO) Process—Processing, Properties, and Applications. Nanomaterials 2021, 11, 1375. [Google Scholar] [CrossRef]
- Carvalho, C.E.R.D.; Costa, G.M.D.; Cota, A.B.; Rossi, E.H. High Temperature Oxidation Behavior of AISI 304 and AISI 430 Stainless Steels. Mater. Res. 2006, 9, 393–397. [Google Scholar] [CrossRef]
- Nataraj, M.V.; Swaroop, S. Deformation-Induced Phase Transition and Nanotwins in SS 304 Steel during Cryogenic Laser Shock Peening without Coating. J. Mater. Res. Technol. 2022, 19, 2611–2622. [Google Scholar] [CrossRef]
- Dewangan, S.; Mishra, S. Analysing Microstructure and Hardness of SS-304 under Annealed, Normalized, Quenched and Step Cooled Conditions. J. Inst. Eng. Ser. D 2023, 104, 1–14. [Google Scholar] [CrossRef]
- Revilla, R.I.; Wouters, B.; Andreatta, F.; Lanzutti, A.; Fedrizzi, L.; De Graeve, I. EIS Comparative Study and Critical Equivalent Electrical Circuit (EEC) Analysis of the Native Oxide Layer of Additive Manufactured and Wrought 316L Stainless Steel. Corros. Sci. 2020, 167, 108480. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Babaei, K. The Effects of Nano- and Micro-Particles on Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Titanium Substrates: A Review. Surf. Interfaces 2020, 21, 100659. [Google Scholar] [CrossRef]
Sample | Electrolyte |
---|---|
2.0 KOH | 2.0 g·L−1 KOH + 10 g·L−1 Ta(OH)5 |
2.5 KOH | 2.5 g·L−1 KOH + 10 g·L−1 Ta(OH)5 |
3.0 KOH | 3.0 g·L−1 KOH + 10 g·L−1 Ta(OH)5 |
10 TaOH | 2.0 g·L−1 KOH + 10 g·L−1 Ta(OH)5 |
30 TaOH | 2.0 g·L−1 KOH + 30 g·L−1 Ta(OH)5 |
50 TaOH | 2.0 g·L−1 KOH + 50 g·L−1 Ta(OH)5 |
Sample | Rs (Ω) | R1 (Ω) | CPE1 (Ω−1 cm−2 s−α) | α1 | R2 (Ω) | C1 (C) | CPE2 (Ω−1 cm−2 s−α) | α2 | χ2 |
---|---|---|---|---|---|---|---|---|---|
Substrate | 171 | 1.7 × 105 | 1.9 × 10−5 | 0.9 | 13.5 × 105 | 2.8 × 10−5 | - | - | 2.0 × 10−4 |
2.0 KOH | 2 × 103 | 6 × 106 | 4.1 × 10−6 | 0.8 | 3.1 × 105 | - | 1.9 × 10−6 | 0.5 | 3.4 × 10−4 |
2.5 KOH | 8.3 × 104 | 6.7 × 107 | 2.8 × 10−7 | 0.4 | 5.2 × 105 | 1.2 × 10−6 | - | - | 9.1 × 10−5 |
3 KOH | 160 | 6.7 × 105 | 2 × 10−5 | 0.8 | 2.4 × 104 | - | 4.3 × 10−5 | 0.8 | 1.8 × 10−4 |
10 TaOH | 2 × 103 | 6 × 106 | 4.1 × 10−6 | 0.8 | 3.1 × 105 | - | 1.9 × 10−6 | 0.5 | 3.4 × 10−4 |
30 TaOH | 5 × 103 | 2 × 105 | 1.4 × 10−6 | 0.7 | 1 × 1020 | - | 1.8 × 10−6 | 0.4 | 5.8 × 10−5 |
50 TaOH | 4.4 × 104 | 2 × 107 | 2.9 × 10−7 | 0.5 | 6.2 × 104 | - | 5.2 × 10−7 | 0.5 | 7.6 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Proença, J.P.; Ribeiro, R.P.; Rangel, E.C.; da Cruz, N.C.; Pinto, B.d.O.; Grandini, C.R.; Correa, D.R.N. Alloying Element Depletion and Phase Transition in Stainless Steel 304 Induced by PEO Treatment in KOH- and TaOH-Rich Electrolyte. Crystals 2023, 13, 1480. https://doi.org/10.3390/cryst13101480
de Proença JP, Ribeiro RP, Rangel EC, da Cruz NC, Pinto BdO, Grandini CR, Correa DRN. Alloying Element Depletion and Phase Transition in Stainless Steel 304 Induced by PEO Treatment in KOH- and TaOH-Rich Electrolyte. Crystals. 2023; 13(10):1480. https://doi.org/10.3390/cryst13101480
Chicago/Turabian Stylede Proença, João Paulo, Rafael Parra Ribeiro, Elidiane Cipriano Rangel, Nilson Cristino da Cruz, Bruna de Oliveira Pinto, Carlos Roberto Grandini, and Diego Rafael Nespeque Correa. 2023. "Alloying Element Depletion and Phase Transition in Stainless Steel 304 Induced by PEO Treatment in KOH- and TaOH-Rich Electrolyte" Crystals 13, no. 10: 1480. https://doi.org/10.3390/cryst13101480
APA Stylede Proença, J. P., Ribeiro, R. P., Rangel, E. C., da Cruz, N. C., Pinto, B. d. O., Grandini, C. R., & Correa, D. R. N. (2023). Alloying Element Depletion and Phase Transition in Stainless Steel 304 Induced by PEO Treatment in KOH- and TaOH-Rich Electrolyte. Crystals, 13(10), 1480. https://doi.org/10.3390/cryst13101480