Next Article in Journal
Effect of Aluminum Addition on the Microstructure, Magnetic, and Mechanical Properties of FeCrCoNiMn High-Entropy Alloy
Previous Article in Journal
Regularities of Manganese Charge State Formation and Luminescent Properties of Mn-Doped Al2O3, YAlO3, and Y3Al5O12 Single Crystalline Films
Previous Article in Special Issue
Dioxin-Linked Covalent Organic Framework-Supported Palladium Complex for Rapid Room-Temperature Suzuki–Miyaura Coupling Reaction
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Pd(II), Pd(III) and Pd(IV) Cyclometallated Compounds with 2-Arylpyridines and Their Derivatives or Analogues: 44 Years (1980–2023) of NMR and Single Crystal X-ray Studies

by
Leszek Pazderski
1,* and
Pavel A. Abramov
2
1
Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina, 87100 Toruń, Poland
2
Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
*
Author to whom correspondence should be addressed.
Crystals 2023, 13(10), 1482; https://doi.org/10.3390/cryst13101482
Submission received: 1 August 2023 / Revised: 22 September 2023 / Accepted: 27 September 2023 / Published: 11 October 2023

Abstract

:
In this paper, a review on Pd(II), Pd(III), and Pd(IV) cyclometallated compounds with 2-arylpyridines (2-phenylpyridine, 2-benzylpyridine, 2-benzoylpyridine, 2-phenoxypyridine, 2-phenylsulfanylpyridine, 2-anilinopyridine, 2-(naphth-1-yl)pyridine, 2-(naphth-2-yl)pyridine, and their derivatives) and their analogues (2-phenylquinoline and 7,8-benzoquinoline) with 174 references is presented. A total of 672 species, containing κ2-N(1),C(6′)*-palladium (Pd(II), Pd(III), Pd(IV)) or analogous moiety (i.e., chelated by nitrogen of the pyridine-like ring and the deprotonated ortho-carbon of the phenyl-like ring) and thus possessing a character intermediate between metal complexes and organometallics, studied in the years 1980–2023 by NMR spectroscopy and/or single crystal X-ray diffraction (202 X-ray structures, for 186 species), are described. The biological or catalytic activity and luminescence properties of these species, as well as their possible applications as advanced materials were studied and are also quoted.

1. Introduction

The aza aromatic compound 2-phenylpyridine (2ppy) is known to coordinate transition metal ions in two ways: as a monodentate N(1)-donor or as a bidentate N(1),C(6′)*-chelating agent 2ppy* (2ppy* = monoanionic form of 2ppy, deprotonated in the phenyl side group at the ortho-carbon C(6′)*). In the latter case, it forms Pd(II)-2ppy* cyclopalladated compounds, which can be regarded as either complexes or organometallics (due to the presence of both palladium-nitrogen and palladium-carbon bonds), usually upon the presence of some other, auxiliary ligands (inorganic and/or organic) which complete the square-planar (d8) coordination sphere. The same κ2-N(1),C(6′) coordination mode is observed also for 2ppy* derivatives containing substituents in the pyridine and/or in the phenyl ring (denoted generally as 2PPY*) and results in a variety of Pd(II)-2PPY* compounds (Scheme 1).
The same κ2-N(1),C(6′) coordination of Pd(II) is observed for such analogues of 2ppy* as 2-benzylpyridine*, 2-benzoylpyridine*, 2-phenoxypyridine*, 2-phenylsulfanylpyridine*, 2-anilinopyridine*, etc. (type A; Scheme 2), while those of κ2-N(1),C(2′) or κ2-N(1),C(3′) are noted for 2-(naphth-1-yl)pyridine* and 2-(naphth-2-yl)pyridine*, respectively (type B; Scheme 3), including their variously substituted derivatives. These 2PPY* analogues (denoted generally as 2ArPY*) yield some Pd(II)-2ArPY* species.
Similar Pd(II) chelation has also been described for analogues of 2ArPY* containing a pyridine-like ring (PY#), especially quinoline, and an aryl ring (Ar), linked by a single bond (e.g., in 2-phenylquinoline*) or fused (e.g., in 7,8-benzoquinoline*) together with their variously substituted derivatives (denoted generally as ArPY#*). In both cases, the coordination mode is nearly the same, but the numbering of metal-bonded atoms is different (N(1) and C(6′) in 2-phenylquinoline*; N(1) and C(10) in 7,8-benzoquinoline*), resulting in many Pd(II)-ArPY#* species (Scheme 4).
All of these organic ligands, i.e., 2ppy*, 2PPY*, 2ArPY*, and ArPY#*, are further generally named as “2-arylpyridines*”.
The majority of Pd(II) compounds with 2-arylpyridines* are mononuclear (monomeric), having the general formulae [Pd(2-arylpyridine*)L1L2] (in case of L1 = L2, i.e., identical L ligands: [Pd(2-arylpyridine*)L2]) or [Pd(2-arylpyridine*)(LL)]. However, many di-, oligo- and polynuclear forms are known as well—the most abundant are dimeric species in which two Pd(II) ions are bridged by two bidentate X ligands (e.g., halides, hydroxides, acetates, etc.), with the general formula [Pd(2-arylpyridine*)(µ-X)]2; slight variations in composition (e.g., [Pd(2-arylpyridine*)(µ-XX)0.5]2 when the bridge is one tetradentate XX ligand, and [Pd(2-arylpyridine*)Y(µ-X)0.5]2 when the bridge is one bidentate X ligand, while Y is any monodentate ligand) are also possible.
The most popular examples of such dimeric molecules are [Pd(2ppy*)(µ-Cl)]2 and [Pd(2ppy*)(µ-CH3COO)]2, shown below (Scheme 5); the other dimers have more or less similar structures (with possible cisoid or transoid orientation of the respective nitrogen atoms), although they can significantly differ in their three-dimensional distribution of all of their ligands in space. Depending on the type of bridge, both 2-arylpyridine* ligands are most often in the same plane (e.g., for X = Cl, OH), which results in nearly flat dimeric structures or in two distinct, but nearly parallel, planes (e.g., for X = CH3COO).
Besides the above Pd(II) compounds, some Pd(III) and Pd(IV) species with 2-arylpyridines* are also known. Their formulae and detailed structures will be described separately below. Generally, all Pd(III)-(2-arylpyridine*) species are dinuclear or polynuclear, whereas the Pd(IV)-(2-arylpyridine*) ones are mononuclear.
It must be underlined here that the bidentate coordination mode of 2-arylpyridine* that we are concerned with is also widely observed for many other transition metal ions; however, this review is focused at the palladium compounds only.
The main aim of this review is the summary of NMR and X-ray structural data. However, many of the species noted herein exhibit biological (anti-tumour and/or anti-microbial) and catalytic activity, as well as luminescence (both fluorescence and phosphorescence) or interesting physicochemical properties, which allow for some practical applications; these features are also described in this review, at least in the most important cases.
The increasing interest in palladium compounds with 2-arylpyridine* can be illustrated by the numbers of compounds for which single crystal X-ray structures were published (in total, 202) every year, as presented in Figure 1.
The year-to-year fluctuations can be eliminated by calculating the numbers of compounds for which X-ray structures were published for each five-year period, being as follows: 1991–1995: 3, 1996–2000: 4, 2001–2005: 12, 2006–2010: 59, 2011–2015: 61, 2016–2020: 48, and from 2021: already 15 (in 2.5 years). This tendency clearly exhibits the growth of research intensity on the concerned compounds.

2. Reviewed Data

2.1. Pd(II) Compounds

The total number of Pd(II) species reviewed here is 557, including 172 X-ray structures (for 161 species, either neutral or ionic; various solvates/hydrates are treated here as distinct chemicals).

2.1.1. Pd(II)-2ppy* Compounds

A total of 277 Pd(II)-2ppy* compounds were reviewed, including 100 X-ray structures (for 91 species).

Mononuclear Pd(II)-2ppy* Compounds

A total of 240 Pd(II)-2ppy* mononuclear (monomeric) compounds with various auxiliary ligands, having the general formula [Pd(2ppy*)L1L2] (in case of L1 = L2, i.e., identical L ligands: [Pd(2ppy*)L2]) or [Pd(2ppy*)(LL)], as shown in Scheme 1 (left or right, respectively; R1 = R2 = H), are reported; 237 of them were characterised by NMR spectroscopy and/or by single crystal X-ray diffraction (exceptionally also by X-ray powder diffraction with Rietveld refinement, resulting in the full X-ray structure) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94]. They are listed in Table 1, together with the solvents used upon the NMR studies and the CCDC reference codes for the respective 68 X-ray structures (and 68 species).
In cases when the sum of the electric charges at an auxiliary ligand(s) is different from −1 (usually 0), the concerned Pd(II)-2ppy* compound is cationic (usually +1 charge) and the relevant anion is presented in a separate column, Counterion; otherwise (the sum of electric charges at an auxiliary ligand(s) being −1) the Pd(II)-2ppy* molecule is electrically neutral. Some anionic Pd(II)-2ppy* compounds (with -1 charge, due to the sum of ligands’ charges being −2) are also known, being, however, rare. Nevertheless, in the general formulae using the symbols L, LL, etc., the electric charges were neglected for clarity.
Moreover, the compounds’ biological (BIO) and catalytic (CAT) activity, as well as luminescence properties (LUM1, LUM2, LUMx; for detailed explanation see Section 4.3 Luminescence) or possible applications as advanced materials (MAT) are indicated. In a few cases, they were studied for some compounds despite the lack of the respective X-ray or NMR data; such species have been also included in Table 1.
The same notations are used in analogous Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10.
Table 1. NMR and/or X-ray studied monomeric [Pd(2ppy*)L1L2] (in particular, [Pd(2ppy*)L2]) and [Pd(2ppy*)(LL)] compounds (L1, L2, L—monodentate ligands; LL—bidentate ligands).
Table 1. NMR and/or X-ray studied monomeric [Pd(2ppy*)L1L2] (in particular, [Pd(2ppy*)L2]) and [Pd(2ppy*)(LL)] compounds (L1, L2, L—monodentate ligands; LL—bidentate ligands).
L1L2LLCounterionNMR SolventX-ray (CCDC)GeometryActivity
Cl (1)


Cl
Cl (1)


Cl
[Pd(2-phenylpyridine*)(dimethyl sulfoxide)2]+ (1)
[TeIV(2-phenylpyridine*)2Cl]+
DMF-d7+DMSO-d6 [1]
DMSO-d6 [2]



PUBXAO (a) [2]
COCl CD2Cl2 [3]
NH3Cl CDCl3, DMSO-d6 [4,5,6] BIO [5]
CNCN K+CD3COCD3 [7]
CNCN (CH3CH2CH2CH2)4N+CD3OD, CD3COCD3 [8,9] LUM1 [8,9]
13CN13CN (CH3CH2CH2CH2)4N+CD2Cl2 [9]
CN (2) CN (2) Tl+ (2)CD3OD [9]REJHOF [9] LUM1 [9]
SNSS unknown [10]
SNSNH unknown [10]
n-pentane-2,4-dionate (3) CDCl3 [11,12,13] LUM2 [12]
1-phenyl-n-butane-1,3-dionate-κ2-O,O (4) CDCl3 [13]POKSAK [13]trans(OCH3O,N)
1,1,1,5,5,5-hexafluoro-n-pentane-2,4-dionate (3) CDCl3 [14]
dimethyl sulfoxide (1)dimethyl sulfoxide (1) [Pd(2-phenylpyridine*)Cl2]− (1)DMF-d7+DMSO-d6 [1]
dimethyl sulfoxideCl DMSO-d6 [15] CAT [15]
1,4,7-trithiacyclononane-κ3-S,S,SPF6CD3NO2 [16]VIYXOR [16] (5A)
1-oxa-4,7-dithiacyclononane-κ2-S,SPF6CD3NO2 [17]WOMQOH [17]
methylamineCl CDCl3 [5] BIO [5]
isopropylamineCl CDCl3 [4]
tert-butylamineCl CDCl3 [4,5] BIO [5]
ethane-1,2-diamine-κ2-N,NClDMSO-d6 [18]MAHPIW [19] BIO [18]
LUM1 [19]
ethane-1,2-diamineClO4CD3CN [20,21]
ethane-1,2-diamineCF3SO3DMSO-d6 [22]
N,N,N’,N’-tetramethylethane-1,2-diamineCF3SO3CDCl3 [22]
propane-1,3-diamineClDMSO-d6 [18] BIO [18]
cis-cyclohexane-1,2-diamineClDMSO-d6 [18] BIO [18]
trans-cyclohexane-1,2-diamineClDMSO-d6 [18] BIO [18]
acetonitrileacetonitrile ClO4CD3CN [23] LUM2 [23]
acetonitrile-Ntrifluoroacetate-O CD3CN [24]AFABOA [24]trans(N,N)
diethylaminocarbodithioate CDCl3 [13]
pyrrolidine-1-carbodithioate-S,S CDCl3 [25]XUYPOZ [25]
piperidine-1-carbodithioate-S,S CD2Cl2 [26]JUPNIT [26]
1,2-dicyanoethane-1,2-dithiolate(CH3CH2CH2CH2)4N+CD3CN [27]
O,O’-diethyldithiophosphate CDCl3 [13,28]
O,O’-di-n-propyldithiophosphate CDCl3 [28]
O,O’-di-n-butyldithiophosphate CDCl3 [28]
O,O’-di-sec-butyldithiophosphate CDCl3 [28]
glycinate CD3OD [29]
L-alaninate CD3OD [29]
D-valinate CD3OD [29]
D-leucinate CD3OD [29]
L-prolinate CD3OD [29]
2-formylphenolate-κ2-O,O CDCl3 [13]POKRUD [13]trans(Ophenolate,N)
2-(phenyliminomethyl)phenolate-κ2-N,O CDCl3 [13]YABMEV [30]trans(N,N)LUM2 [30]
2-(4-chlorophenyliminomethyl)phenolate-κ2-N,O CDCl3 [13]ASEGUB [30,31]trans(N,N)LUM2 [30]
2-(naphth-1-yliminomethyl)phenolate CDCl3 [30] LUM2 [30]
2-((4-diphenylaminophenyl)iminomethyl)-4-methoxyphenolate-κ2-Nimine,Ophenolate CDCl3 [32]NUPROH [32]trans(N,N)MAT [32]
2-((4-(4-diphenylaminophenyl)phenyl)iminomethyl)-4-methoxyphenolate-κ2-Nimine,Ophenolate CDCl3 [32]NUPRUN [32]trans(N,N)MAT [32]
2-((4-(2-(4-diphenylaminophenyl)vinyl)phenyl)iminomethyl)-4-methoxyphenolate-κ2-Nimine,Ophenolate CDCl3 [32]NUPDOT [32]trans(N,N)MAT [32]
2-aminobenzenethiolate CDCl3 [31] LUM2 [31]
N-(4-n-hexoxybenzylidene-2-olate)-4-n-hexylaniline-κ2-N,Ophenolate CDCl3 [33]UXILET [34]trans(N,N)
1,5-diphenylbiguanideCH3COODMSO-d6 [35]
1,5-bis(4-tert-butylphenyl)diphenylbiguanide-κ2-N2,N4CH3COODMSO-d6 [35]KEMFEQ [35]
1,5-bis(3,5-difluorophenyl)biguanideCH3COODMSO-d6 [35]
1,5-bis(3,5-dichlorophenyl)biguanideCH3COODMSO-d6 [35]
1,5-bis(4-bromophenyl)diphenylbiguanideCH3COODMSO-d6 [35]
1,5-bis(3,5-dimethoxyphenyl)biguanideCH3COODMSO-d6 [35]
1,5-diphenylbiguanidate DMSO-d6 [35]
1,5-bis(4-tert-butylphenyl)diphenylbiguanidate-κ2-N2,N4 DMSO-d6 [35]KEMDOY (b) [35]
1,5-bis(3,5-difluorophenyl)biguanidate-κ2-N2,N4 DMSO-d6 [35]KEMDEO (b) [35]
1,5-bis(3,5-dichlorophenyl)biguanidate-κ2-N2,N4 DMSO-d6 [35]KEMFAM (b) [35]
1,5-bis(4-bromophenyl)diphenylbiguanidate DMSO-d6 [35]
1,5-bis(3,5-dimethoxyphenyl)biguanidate DMSO-d6 [35]
2-formylpyrrolate-κ2-N,O CDCl3 [13]POKSEO [13]trans(N,N)LUM2 [31]
pyridinepyridine ClO4DMSO-d6 [36]
pyridine
pyridine-d5
Cl
Cl
CDCl3 [4,6]
BIO [5]
pyridine-d5Br BIO [5]
pyridine-d5I BIO [5]
pyridine-d5n-decanoate CDCl3+C5D5N [37]
pyridine-d5benzoate CDCl3 [37]
pyridine-d54-methylbenzoate CDCl3 [37]
pyridine-d54-fluorobenzoate CDCl3 [37]
pyridine-d54-trifluoromethylbenzoate CDCl3 [37]
pyridine-d54-chlorobenzoate CDCl3 [37]
pyridine-d54-bromobenzoate CDCl3 [37]
pyridine-d54-methoxybenzoate CDCl3 [37]
pyridine-d54-phenoxybenzoate CDCl3 [37]
pyridine-d54-acetylbenzoate CDCl3 [37]
pyridine-d54-trifluoroacetylbenzoate CDCl3+C5D5N [38]
pyridine-d54-cyanobenzoate CDCl3 [37]
pyridine-d54-nitrobenzoate CDCl3 [37]
pyridine-Nsaccharinate-N CDCl3 [39]DAQNAM [39]trans(Npy,N)LUM2 [39]
2-methylpyridineCl CDCl3 [4,6]
3-methylpyridineCl CDCl3 [6]
4-methylpyridineCl CDCl3 [4,6]
2,3-dimethylpyridineCl CDCl3 [6]
2,4-dimethylpyridineCl CDCl3 [6]
2,6-dimethylpyridine-NF CDCl3 [40]FULWUF [40]trans(N,N)
2,6-dimethylpyridineCl CDCl3 [6] BIO [5]
2,6-dimethylpyridineI CDCl3 [40]
3,5-dimethylpyridineCl CDCl3 [5,6] BIO [5]
2,4,6-trimethylpyridine-NCl CDCl3 [6]DUBLAP [6]trans(N,N)
2-ethylpyridineCl DMSO-d6 [41]
4-tert-butylpyridineF CDCl3, CD2Cl2 [40]
4-tert-butylpyridineI CDCl3 [40]
2-phenylpyridine-Ntrifluoroacetate-O CDCl3, CD3COCD3, CD3CN [24]AFABIU [24]trans(N,N)
2-phenylpyridine-Ntridecafluoro-n-heptanoate-O CDCl3, CD3COCD3, CD3CN [24]AFABEQ [24]trans(N,N)
2-phenylpyridine* (6) CDCl3 [42,43,44,45,46,47]ZUNYIS (c) [48]trans(C,N)
2-aminopyridine-NpyCl DMSO-d6 [41]AMUNED [41]trans(N,N)
2-amino-3-methylpyridine-NpyCl DMSO-d6 [41]AMUNAZ [41]trans(N,N)
2,6-diaminopyridineCl DMSO-d6 [41]
2-acetamido-3-methylpyridineCl DMSO-d6 [41]
pyridine-2-carboxylate-κ2-N,O WOVHEX [49]trans(N,N)
2-(thiophen-2-yl)pyridine* (7) CDCl3 [42]
bis(pyrid-2-yl)methanediolCH3COOD2O, CD3OD [50]
bis(pyrid-2-yl) ketoneCH3COOD2O [50]
2,2′-bipyridineCF3SO3DMSO-d6 [22,51] BIO [51]
LUM1 [51]
4,4′-dimethyl-2,2′-bipyridineCF3SO3DMSO-d6 [22]
4,4′-di-n-nonyl-2,2′-bipyridineCF3SO3CDCl3 [22]
1,10-phenanthrolineCF3SO3DMSO-d6 [22,51] BIO [51]
LUM2 [51]
1,10-phenanthrolineNO3CD3OD [52] LUM1 [52]
1,10-phenanthrolinePF6CD3COCD3 [53]
Cl 2,9-dimethyl-1,10-phenanthroline-κ2-N,N CD3COCD3 [53]EKEDEG [53] (5B)
H2O 2,9-dimethyl-1,10-phenanthroline-κ2-N,N’PF6CD3COCD3 [53]EKEDOQ (d)[53] (5C)
4,7-dimethyl-1,10-phenanthrolineCF3SO3DMSO-d6 [22]
4,7-diphenyl-1,10-phenanthrolinePF6CD3COCD3 [53]
Cl 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline CD3COCD3 [53](5B)
dipyrido[f,h]quinoxalineNO3DMSO-d6 [52] LUMx [52]
6,7-dicyanodipyrido[f,h]quinoxalineNO3DMSO-d6 [52] LUMx [52]
dipyrido[a,c]phenazineNO3DMSO-d6 [52] LUMx [52]
quinolinesaccharinate CDCl3 [39] LUM1 [39]
quinolin-8-olate-κ2-N,O CDCl3 [13,54]PERWIU [55]trans(N,N)LUMx [54]
5-formyl-quinolin-8-olate LUMx [54]
5-(n-dodecylaminomethyl)quinolin-8-olate CDCl3 [54] LUMx [54]
5-(n-dodecyliminomethyl)quinolin-8-olate CDCl3 [54] LUMx [54]
5-(n-dodecanoylamide)quinolin-8-olate CDCl3 [54] LUMx [54]
acridinesaccharinate CDCl3 [39] LUM1 [39]
7,8-benzoquinoline* (8) CDCl3 [42]
2,3-bis(pyrid-2-yl)pyrazineClO4CD3CN, DMSO-d6 [56,57] LUM1 [57]
2-aminopyrimidine-NpmCl DMSO-d6 [41]AMUNON [41]trans(N,N)
2-acetamidopyrimidineCl DMSO-d6 [41]
1,8-naphthyridine-NCl CD2Cl2 [58]XAKKOM (e) [58]trans(N,N)
7-azaindoleCl CD2Cl2 [58]
6,7-dimethyl-2,3-bis(pyrid-2-yl)quinoxalineClO4DMSO-d6 [57] LUM1 [57]
dipyrido[f,h]quinoxalineNO3DMSO-d6 [52]
6,7-dicyanodipyrido[f,h]quinoxalineNO3DMSO-d6 [52]
dipyrido[a,c]phenazineNO3DMSO-d6 [52]
5-(2,4,6-trimethylphenyl)dipyrrinate CD2Cl2, C6D6 [59] LUM2 [59]
5-(4-cyanophenyl)dipyrrinate-κ2-N,N CD2Cl2 [59]OJATEZ [59] LUM2 [59]
2-aminobenzothiazole-NbzthCl DMSO-d6 [41]AMUNIH [41]trans(N,N)
2-acetamidobenzothiazoleCl DMSO-d6 [41]
1-(pyrrolidin-1-yl)-1,1-bis(pyrid-2-yl)ethane-κ2-Npy,NpyB(C6F5)4CD2Cl2 [60]BIFDIG (f) [60]
1-(pyrrolidin-1-ium-1-yl)-1,1-bis(pyrid-2-yl)ethane2B(C6F5)4CD2Cl2 [60]
1-(pyrrolidin-1-ium-1-yl)-1,1-bis(pyrid-2-yl)ethane-κ2-Npy,Npy’2SbF6CD2Cl2 [60]BIFDOM (c) [60]
N-(4-dimethylaminobenzyl)-2-(N-formyl-(4-dimethylaminobenzyl)amino)ethylamine-NethylamineCl CDCl3 [61]IGERES [61]trans(N,N)
1,3-dimethyl-2,4-dione-5-(2,5-dimethylphenyliminomethyl)-1,2,3,4-tetrahydropyrimidin-6-olate CDCl3 [62] CAT [62]
1,3-dimethyl-2,4-dione-5-(2,6-diisopropylphenyliminomethyl)-1,2,3,4-tetrahydropyrimidin-6-olate-κ2-Nimine,Oolate CDCl3 [62]XOFKEL [62]trans(N,N)CAT [62]
1,3-dimethyl-2,4-dione-5-(2-methylsulfanylphenyliminomethyl)-1,2,3,4-tetrahydropyrimidin-6-olate-κ2-Nimine,Oolate CDCl3 [62]XOFKIP [62]trans(N,N)CAT [62]
(pyrazolate-1-yl)2BH2 CDCl3 [63]
(pyrazolate-1-yl)2BH(pyrazolate-1-yl)-κ2-N2,N2′ CDCl3 [63]HINBAH (d) [63]
trimethylphosphineCl CDCl3 [64]
trimethylphosphine-PN3 CDCl3 [64]GAJMUA [64]trans(P,N)
trimethylphosphiteCl CDCl3 [5] BIO [5]
triethylphosphineCl CDCl3 [65]
tri-n-propylphosphineCl CDCl3 [64]
tri-n-propylphosphineN3 CDCl3 [64]
dimethylphenylphosphinesuccinimidate CD3COCD3 [66]
methyldiphenylphosphinesuccinimidate CD3COCD3 [66]
triphenylphosphine-PCl CDCl3 [5,15]PORNUG [67]trans(P,N)BIO [5], CAT [15,67]
triphenylphosphine-PO,O’-dimethylthiophosphate-S CDCl3, THF-d8 [68]SEMDEU [68]trans(P,N)
triphenylphosphine-P4-methylphenylsulfonate-O CDCl3 [67]PORNEQ [67]trans(P,N)CAT [67]
triphenylphosphinesuccinimidate CD3COCD3 [66] CAT [69]
triphenylphosphinemaleimidate CDCl3 [69] CAT [69]
triphenylphosphinephthalimidate CDCl3 [69] CAT [69]
triphenylphosphine-P4,5-dichlorophtalimidate-N CDCl3 [70]UMAPAB [70]trans(P,N)
tris(4-fluorophenyl)phosphinesuccinimidate CD3COCD3 [66] CAT [69]
tris(4-fluorophenyl)phosphinemaleimidate CDCl3 [69] CAT [69]
tris(4-fluorophenyl)phosphinephthalimidate CDCl3 [69] CAT [69]
tris(4-methoxyphenyl)phosphinesuccinimidate CD3COCD3 [66] CAT [69]
tris(4-methoxyphenyl)phosphinemaleimidate CDCl3 [69] CAT [69]
tris(4-methoxyphenyl)phosphinephthalimidate CDCl3 [69] CAT [69]
(2-formylphenyl)diphenylphosphineCl CDCl3 [71]
(2-formylphenyl)diphenylphosphineCF3SO3CDCl3 [71]
((oxydiphenylphosphino)methyl)diphenylphosphineCl DMSO-d6 [41]
(2-(oxydiphenylphosphino)ethyl)diphenylphosphineCl DMSO-d6 [41]
(diphenylphosphinomethyl)diphenylphosphinolateNO3DMSO-d6 [41]
(2-diphenylphosphinoethyl)diphenylphosphinolateNO3DMSO-d6 [41]
(2-(methyliminomethyl)phenyl)diphenylphosphine-κ2-P,NPF6CDCl3 [72]CUBVEA [72]trans(P,N)
(2-(ethyliminomethyl)phenyl)diphenylphosphinePF6CDCl3 [72]
(2-(n-propyliminomethyl)phenyl)diphenylphosphinePF6CDCl3 [72]
(2-(iso-propyliminomethyl)phenyl)diphenylphosphinePF6CDCl3 [72]
(2-(tert-butyliminomethyl)phenyl)diphenylphosphinePF6CDCl3 [72]
(2-(phenyliminomethyl)phenyl)diphenylphosphinePF6CDCl3 [72]
(2-(methylaminoiminomethyl)phenyl)diphenylphosphinePF6CDCl3 [72]
2-diphenylphosphinobenzoate-κ2-P,O CDCl3 [73,74]EQIRIF (g) [73]trans(P,N)CAT [74]
N-isopropyl-2-diphenylphosphinobenzamidePF6CDCl3 [73]
N-phenyl-2-diphenylphosphinobenzamidePF6CDCl3 [73]
N-isopropyl-2-diphenylphosphinobenzamidate-κ2-P,N CDCl3 [73]EQISEC [73]trans(P,N)
N-phenyl-2-diphenylphosphinobenzamidate CDCl3 [73]
(2-(isopropylaminocarbonyl)phenyl)diphenylphosphineCl CDCl3 [73]
(2-(phenylaminocarbonyl)phenyl)diphenylphosphineCl CDCl3 [73]
(2-(isopropylaminocarbonyl)phenyl)diphenylphosphineacetate CDCl3 [73]
(2-(phenylaminocarbonyl)phenyl)diphenylphosphineacetate CDCl3 [73]
2-(diphenylphosphinoxymethyl)pyridine PF6CD3COCD3 [75]
2-(diphenylphosphinoamino)pyridine-κ2-Npy,PPF6CD3COCD3 [75]JAJBOM [75]trans(P,N)
2-(diphenylphosphinoazanido)pyridine CDCl3 [75]
CH3CH2OCOCHCOCH2P(C6H5)3 (9,10)ClO4CD2Cl2 [76]
CH3OCOC(NC6H5)C(P(C6H5)3)COOCH3 (11A)ClO4CDCl3, CD2Cl2 [77]
C6H5NHCSC(P(C6H5)3)COOCH3 (11B)ClO4CD2Cl2 [78]
C6H5NHCSC(P(C6H5)3)COOCH3 (11B)triphenylphosphine ClO4CD2Cl2 [78]
NCC(P(C6H5)3)C(COOCH3)CHCOOCH3 (11C)ClO4CDCl3 [78]
C(COOCH3)C(COOCH3)P(C6H5)3 (11D)triphenylphosphine ClO4CD2Cl2 [79]
2-(N,P,P-triphenylphosphorimidoyl)phenyl-κ2-C1,N CDCl3 [80]LOQTIW [80]trans(C,N)
1,3,5-triaza-7-phosphadamantane-Pphthalimidate-N CDCl3 [81]IJEYAZ [81]trans(P,N)CAT [81]
1,3,5-triaza-7-phosphadamantanesaccharinate CDCl3 [81] CAT [81]
1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylideneCl CDCl3 [61]
1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene-C2Cl CDCl3 [61]IGERIW [61]trans(C,N)
1,3-bis(4-dimethylaminobenzyl)imidazolidin-2-ylideneCl CDCl3 [61]
1-methyl-3-n-butylimidazol-2-ylideneCl CDCl3 [82] CAT [82]
1-methyl-3-n-butylimidazol-2-ylidene-C2Br CDCl3 [82]MUBQUX [82]trans(C,N)CAT [82]
1-methyl-3-n-butylimidazol-2-ylideneI CDCl3 [82] CAT [82]
1-methyl-3-n-butylimidazol-2-ylidene-C2phthalimidate-N CDCl3 [82]MUBYAL [82]trans(C,N)
1-methyl-3-n-butylimidazol-2-ylidene-C2saccharinate-N CDCl3 [82]MUBRAE [82]trans(C,N)CAT [82]
1-methyl-3-(2-carboxyethyl)imidazol-2-ylideneCl CDCl3 [83] CAT [83]
1-methyl-3-(2-methoxycarbonylethyl)imidazol-2-ylidene-C2I CDCl3 [83]MIXMIS [83]trans(C,N)CAT [83]
1-methyl-3-(2-ethoxycarbonylethyl)imidazol-2-ylidene-C2Br CDCl3 [83]MIXMOY [83]trans(C,N)CAT [83]
1-methyl-3-(2-(3-trimethoxysilyl-n-propyl)oxycarbonylethyl)imidazol-2-ylideneCl CDCl3 [83]
1-methyl-3-(2-benzoxycarbonylethyl)imidazol-2-ylideneCl CDCl3 [83] CAT [83]
1-methyl-3-(2,4,6-trimethylbenzyl)imidazol-2-ylideneBr CDCl3 [84] CAT [84]
1-methyl-3-(2,3,5,6-tetramethylbenzyl)imidazol-2-ylideneBr CDCl3 [84] CAT [84]
1-methyl-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylidene-C2Br CDCl3 [84]IGUVOW [84]trans(C,N)CAT [84]
1-n-butyl-3-phenylimidazol-2-ylideneI CDCl3 [83]
1-n-butyl-3-(2,4,6-trimethylbenzyl)imidazol-2-ylideneBr CDCl3 [85] CAT [85]
1-n-butyl-3-(2,3,5,6-tetramethylbenzyl)imidazol-2-ylideneBr CDCl3 [85] CAT [85]
1-n-butyl-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylideneBr CDCl3 [85] CAT [85]
1-allyl-3-(2,4,6-trimethylbenzyl)imidazol-2-ylideneBr CDCl3 [86] CAT [86]
1-allyl-3-(2,3,5,6-tetramethylbenzyl)imidazol-2-ylideneBr CDCl3 [86] CAT [86]
1-allyl-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylidene-C2Br CDCl3 [86]POHHOL [86]trans(C,N)CAT [86]
1-phenyl-3-(2-carboxyethyl)imidazol-2-ylidene-C2Cl CDCl3, DMSO-d6 [83]MIXNAL (c) [83]trans(C,N)CAT [83]
1-phenyl-3-(2-methoxycarbonylethyl)imidazol-2-ylideneI CDCl3 [83] CAT [83]
1-phenyl-3-(2-ethoxycarbonylethyl)imidazol-2-ylideneBr CDCl3 [83] CAT [83]
1-phenyl-3-(2-benzoxycarbonylethyl)imidazol-2-ylidene-C2Cl CDCl3 [83]MIXMUE [83]trans(C,N)CAT [83]
1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-C2Cl CDCl3 [87]KACMUZ [87]trans(C,N)CAT [87]
1,3-bis(2,4,6-trimethylphenyl)-4,5-dicyanoimidazol-2-ylidene-C2Cl CDCl3 [87]KACNAG (h) [87]trans(C,N)CAT [87]
1-(2,4,6-trimethylphenyl)-3-(2,4,6-trimethylbenzyl)imidazol-2-ylideneBr CDCl3 [88] CAT [88]
1-(2,4,6-trimethylphenyl)-3-(2,3,5,6-tetramethylbenzyl)imidazol-2-ylideneBr CDCl3 [88] CAT [88]
1-(2,4,6-trimethylphenyl)-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylideneBr CDCl3 [88] CAT [88]
1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-C2Cl CD2Cl2 [89]GADLEE (c) [89]trans(C,N)CAT [89]
1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene4-methylbenzenethiolate C6D6 [90,91]
1,3-diisopropylbenzimidazol-2-ylidene-C2Br CDCl3 [92]QEZFEJ [92]trans(C,N)
1-(2-methoxyethyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)benzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2,4,6-trimethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)benzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2,3,5,6-tetramethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)benzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2,3,4,5,6-pentamethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)benzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2-methoxyethyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)-5,6-dimethylbenzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2,4,6-trimethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)-5,6-dimethylbenzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2,3,5,6-tetramethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)-5,6-dimethylbenzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
1-(2,3,4,5,6-pentamethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)-5,6-dimethylbenzimidazol-2-ylideneCl CDCl3 [93] CAT [93]
bis(1-n-hexyl-1H-imidazol-2-ylidene-3-yl)methaneCF3SO3CDCl3 [94] BIO [94]
(1) This compound is an ionic pair [Pd(2ppy*)Cl2] [Pd(2ppy*)(dimethyl sulfoxide)2]+, thus it appears in two distinct rows of Table 1. (2) This ionic compound ([Pd(2ppy*)(CN)2] Tl+) can also be regarded as pentacoordinated [PdTl(2ppy*)(CN)2] neutral molecule. (3) n-pentane-2,4-dionate anionic ligand (−1 charge) is also called acetylacetonate. (4) 1-phenyl-n-butane-1,3-dione anionic ligand (−1 charge) is also called benzoylacetonate. (5A–5C) Pentacoordinated complexes (with chromophores: 5A CNS3, 5B CN3Cl, 5C CN3O). (6) This is [Pd(2ppy*)2] compound. (7) 2-(thiophen-2-yl)pyridine* is N(1),C(3′)*-chelating, monoanionic form of 2-(thiophen-2-yl)pyridine, deprotonated in the thiophen side group at the carbon C(3′). (8) This [Pd(2ppy*)(7,8-benzoquinoline*)] compound is present also in Table 7. (9) CH3CH2OCOCHCOCH2P(C6H5)3 is a neutral ylide ligand having (−1) charge at CH– and (+1) charge at P. (10) Mixture of two isomers differing in the position of –COOCH2CH3 or –COCH2P(C6H5)3 moieties in respect to pyridine and phenyl rings of 2-phenylpyridine*. (11A–11D) CH3OCOC(NC6H5)C(P(C6H5)3)COOCH3 (11A), C6H5NHCSC(P(C6H5)3)COOCH3 (11B), NCC(P(C6H5)3)C(COOCH3)CHCOOCH3 (11C), and C(COOCH3)C(COOCH3)P(C6H5)3 (11D) are neutral ylide ligands having (−1) charge at –C– (P-bonded) and (+1) charge at P. (a) Benzene solvate. (b) Dimethylformamide solvate. (c) Dichloromethane solvate. (d) Diethyl ether solvate. (e) Hemihydrate. (f) Chloroform solvate. (g) Monohydrate. (h) Acetonitrile solvate.

Dinuclear and Oligonuclear Pd(II)-2ppy* Compounds

A total of 37 Pd(II)-2ppy* di- and oligonuclear compounds were NMR- and/or X-ray-studied (32 X-ray structures for 23 species) [1,13,19,24,31,33,36,39,44,45,47,53,57,58,66,67,68,70,78,83,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119].
A total of 32 of these molecules are dinuclear [1,13,19,24,31,33,39,44,45,47,53,66,67,68,70,78,83,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]. 26 of them, analogous to those shown at Scheme 5, correspond to the dimeric [Pd(2ppy*)(µ-X)]2 general formula [1,13,19,24,31,33,36,39,44,45,47,53,57,58,66,67,68,70,78,83,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118], while 2 correspond to the [Pd(2ppy*)(µ-XX)0.5]2 [57,58] one and 2 to that of [Pd(2ppy*)Y(µ-X)0.5]2 [36,118]. Additionally, 2 compounds exhibiting the coordination number 5 have the untypical formula [Pd(2ppy*)(LL)(µ-Cl)0.5]2 (LL = 2,9-dimethyl- or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) [53]. All of these dimers are listed in Table 2, including 27 X-ray structures (for 18 species).
Table 2. NMR- and/or X-ray-studied dimeric [Pd(2ppy*)(µ-X)]2, [Pd(2ppy*)(µ-XX)0.5]2, or [Pd(2ppy*)Y(µ-X)0.5]2 compounds (X—bridging bidentate ligand, XX—bridging tetradentate ligand, Y—monodentate ligand).
Table 2. NMR- and/or X-ray-studied dimeric [Pd(2ppy*)(µ-X)]2, [Pd(2ppy*)(µ-XX)0.5]2, or [Pd(2ppy*)Y(µ-X)0.5]2 compounds (X—bridging bidentate ligand, XX—bridging tetradentate ligand, Y—monodentate ligand).
μ−X or μ−XXYCounterionNMR SolventX-ray (CCDC)GeometryActivity
Cl DMF-d7 [1]SOHDUO [95] SOHDUO 01 [96] SOHDUO 02 [19] SOHDUO 03 [97] all (1A) LUM1 [19]
OH KEXXIV [98] KEXXIV 01 [99] both (1B)
acetate-O,O CDCl3
[33,44,45,47,95,100,101,102,103,104,105,106]
XEMQIQ [107] XEMQIQ 01 [108] XEMQIQ 02 [109] XEMQIQ 03 [67] XEMQIQ 04 [19] XEMQIQ 05 [110] all (2) COJBEJ (2) (a) [109] BIO [110]
LUM1 [19]
½ 3,3-dimethylglutarate CD2Cl2 [58]
trifluoroacetate-O,O CDCl3, CD2Cl2 [19,24]MAHNUG (2) [19] LUM1 [19]
benzoate CDCl3, CD2Cl2 [103]
4-nitrobenzoate CDCl3, CD2Cl2 [103]
succinimidate-N,O CDCl3, CD3COCD3 [45,66]XOTVIL (2) [66]trans(N,N)CAT [45]
2,2,3,3-tetramethylsuccinimidate CDCl3 [45]
maleimidate CD3COCD3 [66]
phtalimidate CD3COCD3 [66]
4,5-dichlorophtalimidate CDCl3 [70]
saccharinate-N,OCO CDCl3 [39]DAQMUF (2) (b) [39]trans(N,N)CAT [39]
LUM1 [39]
½ 4,4′-bipyridineNO3 DMSO-d6 [36]
½ Cl2,9-dimethyl-1,10-phenanthroline-κ2-N,NPF6CD3COCD3 [53]EKEDUW (3) [53]
½ Cl2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline-κ2-N,NPF6CD3COCD3 [53](3)
N,N’-bis(pyrid-4-ylmethyl)oxalamide-Npy1,Npy2 2ClO4CD3COCD3 [111]HEYDOF (4) (c) [111]
pyrazolate-N1,N2 OGONOO (2) OGONUU (2) (b)
OGOPAC (2) (d) [112]
½ 2,2′,3,3′-tetra(pyrid-2-yl)-6,6′-biquinoxaline 2ClO4DMSO-d6 [57] LUM1 [57]
pyridine-2-thiolate CDCl3 [13] LUM2 [31]
pyrimidine-2-thiolate CDCl3 [31] LUM2 [31]
1-methylimidazol-2-thiolate CDCl3 [31] LUM2 [31]
benzimidazol-2-thiolate CDCl3 [31] LUM2 [31]
5,5-diethyl-1,2,5,6-tetrahydropyrimidin-4-olate-N3,O4 DMSO-d6 [113]JUCFEU (2) (e) [113]trans(N,N)BIO [113]
O,O’-dimethylthiophosphate-S CDCl3, DMSO-d6, DMSO-d6+D2O solid [68]SEMDIY (1B) [68] CAT [68]
hydrogenphosphonate DMF-d7 [114]
diethylphosphonate-P,O CDCl3, CD3CN [114,115,116]BUFYOS (1B) [116]trans(P,N)
di(n-butyl)phosphonate-P,O CDCl3 [117]SIDBUE (1B) [117]trans(P,N)
½ 1,2-bis(diethylphosphino)ethane-P,PN3 CDCl3 [118]IGOWIL (2) (b) [118]trans(N,N)
SC(NHC6H5)C(P(C6H5)3)CN (5) 2ClO4DMSO-d6 [78]
1-methyl-3-(2-carboxylatoethyl)imidazol-2-ylidene-C2,O CD3OD [83]MIXMEO (4) (f) [83]trans(C,N)CAT [83]
1-phenyl-3-(2-carboxylatoethyl)imidazol-2-ylidene CD3OD [83] CAT [83]
(1A,1B) Both 2ppy* ligands are nearly in the same plane, exhibiting cisoid (1A) or transoid (1B) geometry (concerns position of their nitrogen atoms). (2) Both 2ppy* ligands are in different but nearly parallel planes (lying on the same side of the Pd-Pd axis), exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (3) Pentacoordinated complex (CN3Cl chromophore). (4) Both 2ppy* ligands are in highly non-parallel planes. (5) SC(NHC6H5)C(P(C6H5)3)CN is a zwitterionic ligand having (−1) charge at S and (+1) charge at P (also some mesomeric ylide forms are possible). (a) Hg(C6F5)2 solvate. (b) Dichloromethane solvate. (c) Diethyl ether dimethylformamide solvate. (d) Chloroform solvate. (e) Dimethyl sulfoxide solvate. (f) Toluene solvate.
Additionally, 5 Pd(II)-2ppy* compounds (including 5 X-ray structures) contain more than two palladium atoms, their molecular formulae being as follows: [Pd(2ppy*)(µ-4,4′-bipyridine)]4(NO3)4 (NMR in DMSO-d6) [36]; [Pd(2ppy*)0.5(2ppy-N)0.5(diethyl phosphonate-P)0.5(µ-hydrogen phosphite-O,O)0.5]4 (NMR in CD3CN; X-ray: ZUMSUY and ZUMSOS for 2ppy solvate) [114]; [Pd(2ppy*)(µ-1,3,5-triazine-2,4,6-trithiolate-N1,N3,N5,S2,S4,S6)0.33]9 (NMR in CD2Cl2; X-ray: MIRGUR for benzene dichloromethane methanol solvate); [Pd(2ppy*)(µ-1,3,5-triazine-2,4,6-triolate-N1,N3,N5,O2,O4,O6)0.2(µ-1,3,5-triazine-2-ol-4,6-diolate-N3,N5,O4,O6)0.2]10 (X-ray: MIRGOL for benzene chloroform dichloromethane methanol solvate); and [Pd(2ppy*)(µ-1,3,5-triazine-2,4,6-triolate-N1,N3,N5,S2,S4,S6)0.33]12 (NMR in CD2Cl2; X-ray: MIRGEB for acetone dichloromethane solvate) [119]. The details of Pd(II) linking in these oligonuclear (tetra-, nona-, deca-, and dodecanuclear) species can be found in the original papers.

2.1.2. Pd(II)-2PPY* Compounds

A total of 53 Pd(II)-2PPY* compounds were reviewed, including 15 X-ray structures (for 15 species).

Mononuclear Pd(II)-2PPY* Compounds

Besides Pd(II)-2ppy* compounds, 31 Pd(II)-2PPY* mononuclear (monomeric) species with various auxiliary ligands, having the general formula [Pd(2PPY*)L1L2] (in case of L1 = L2, i.e., identical L ligands: [Pd(2PPY*)L2]) or [Pd(2PPY*)(LL)], as shown at Scheme 1 (left or right, respectively; R1, R2 ≠ H), were reported and characterised by NMR spectroscopy and/or by single crystal X-ray diffraction [17,21,37,38,50,64,92,120,121,122,123,124,125]. They are listed in Table 3, including 10 X-ray structures (for 10 species).
3 of them contain 2ppy* derivatives that are substituted only in the pyridine ring (R1 = 6-phenyl-) [21,120,121], while 28—only in the phenyl ring (R2 = 3- and 4-methyl-; 3- and 4-fluoro-; 3-chloro-; 4-bromo-; 4-methoxy-; 4-formyl-) [17,37,38,50,64,92,122,123,124,125]. In contrast, there are no compounds which have 2ppy* derivatives with substituents in both the pyridine and the phenyl ring.
Table 3. NMR- and/or X-ray-studied monomeric [Pd(2PPY*)L1L2] (in particular, [Pd(2PPY*)L2]) and [Pd(2PPY*)(LL)] compounds (2PPY* = a-R1-2-(b-R2-phenyl)pyridine*, other than 2ppy*, where R1 and R2 are substituents in the pyridine ring and the phenyl ring, respectively; a = 3–6, b = 2–5; L1, L2, L—monodentate ligands; LL—bidentate ligands).
Table 3. NMR- and/or X-ray-studied monomeric [Pd(2PPY*)L1L2] (in particular, [Pd(2PPY*)L2]) and [Pd(2PPY*)(LL)] compounds (2PPY* = a-R1-2-(b-R2-phenyl)pyridine*, other than 2ppy*, where R1 and R2 are substituents in the pyridine ring and the phenyl ring, respectively; a = 3–6, b = 2–5; L1, L2, L—monodentate ligands; LL—bidentate ligands).
R1R2L1L2LLCounterionNMR SolventX-ray (CCDC)GeometryActivity
6-phenylH ethane-1,2-diamineClO4CD3CN [21]
6-phenylH 6-phenyl-2-phenylpyridine* (1,2) CDCl3 [120]
6-phenylHtriphenylphosphine-PCl CD2Cl2 [121]MAWSOW (a) [121]trans(P,N)
H3-methyl 2-(3-methylphenyl)pyridine* (3) CDCl3 [37]
H3-methylpyridine-d5benzoate CDCl3 [37]
H3-methylpyridine-d54-chlorobenzoate CDCl3 [37]
H 3-methylpyridine-d54-bromobenzoate CDCl3 [37]
H4-methyl2,4,6-tris(trifluoromethyl)phenylH2O CDCl3 [122]
H4-methyl bis(pyrid-2-yl)methanediolCH3COOCD3OD [123]
H4-methyl bis(pyrid-2-yl) ketoneCH3COOCD3OD [123]
H4-methyltrimethylphosphineCl CDCl3 [64]
H4-methyltrimethylphosphine-PN3 CDCl3 [64]GAJNAH [64]trans(P,N)
H4-methyltriethylphosphineCl CDCl3 [64]
H4-methyltriethylphosphineN3 CDCl3 [64]
H4-methyldimethylphenylphosphineCl CDCl3 [64]
H4-methyldimethylphenylphosphineN3 CDCl3 [64]
H4-methyltriphenylphosphine2,4,6-tris(trifluoromethyl)phenyl CDCl3 [122]
H4-methyl1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-C2N3 CDCl3 [124]KENTEE (b) [124]trans(N,N)CAT [124]
H4-methyl1,3-diisopropylbenzimidazol-2-ylidene-C2Br CDCl3 [92]QEZFIN [92]trans(C,N)
H3-fluoro 2-(3-fluorophenyl)pyridine* (4) CDCl3 [38]
H4-fluoro bis(pyrid-2-yl)methanediolCH3COOD2O, CD3OD [50]
H4-fluoro bis(pyrid-2-yl) ketoneCH3COOD2O [50]
H3-chloro 2-(3-chlorophenyl)pyridine* (5) CDCl3 [38]
H4-bromo n-pentane-2,4-dionate-κ2-O,O (6) CDCl3 [125]SOFCAT [125]
H4-bromo1,3-bis(4-methylphenyl)imidazol-2-ylidene-C2Cl CDCl3 [125]SOFBEW [125]trans(C,N)CAT [125]
LUMx [125]
H4-bromo1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene-C2Cl CDCl3 [125]SOFBOG [125]trans(C,N)CAT [125]
LUMx [125]
H4-bromo1,3-bis(4-methoxyphenyl)imidazol-2-ylidene-C2Cl CDCl3 [125]SOFBIA (a) [125]trans(C,N)CAT [125]
LUMx [125]
H4-methoxy bis(pyrid-2-yl)methanediolCH3COOD2O, CD3OD [50]
H4-methoxy bis(pyrid-2-yl) ketoneCH3COOD2O [50]
H4-formyl 1,4,7-trithiacyclononane-κ3-S,S,SPF6CD3NO2 [17]WOMREY [17](7)
H4-formyl 1-oxa-4,7-dithiacyclononane-κ2-S,SPF6CD3NO2 [17]WOMRAU [17]
(1) 6-phenyl-2-phenylpyridine* is N(1),C(3′)*-chelating, monoanionic form of 2,6-diphenylpyridine, deprotonated in one phenyl side group at the carbon C(3′) (while C(3″) in the second phenyl side group remains protonated and does not coordinate metal atom). (2) This is [Pd(6-phenyl-2-phenylpyridine*)2] compound. (3) This is [Pd(2-(3-methylphenyl)pyridine*)2] compound. (4) This is [Pd(2-(3-fluorophenyl)pyridine*)2] compound. (5) This is [Pd(2-(3-chlorophenyl)pyridine*)2] compound. (6) n-pentane-2,4-dionate anionic ligand (-1 charge) is also called acetylacetonate. (7) Pentacoordinated complex (CNS3 chromophore). (a) Dichloromethane solvate. (b) Tetrahydrofuran solvate.

Dinuclear Pd(II)-2PPY* Compounds

A total of 22 Pd(II)-2PPY* dinuclear compounds, all corresponding to the dimeric [Pd(2PPY*)(µ-X)]2 general formula, were NMR- and/or X-ray-studied [17,19,44,50,64,100,123,126,127,128,129].
1 of them contains 2ppy* derivatives substituted only in the pyridine ring (R1 = 3-methyl-) [44,126], 20—only in the phenyl ring (R2 = 2-, 3- and 4-methyl-; 4-fluoro-; 4-trifluoromethyl-; 2- and 4-chloro-; 4-bromo-; 4-methoxy-; 4-formyl-) [17,19,50,64,100,123,127,128], and 1—in both rings [129].
All these dimers are listed in Table 4, including 5 X-ray structures (for 5 species).
Table 4. NMR- and/or X-ray-studied dimeric [Pd(2PPY*)(µ-X)]2 compounds (2PPY* = a-R1-2-(b-R2-phenyl)pyridine*, other than 2ppy*, where R1 and R2 are substituents in the pyridine ring and the phenyl ring, respectively; a = 3–6, b = 2–5; X—bidentate bridging ligand).
Table 4. NMR- and/or X-ray-studied dimeric [Pd(2PPY*)(µ-X)]2 compounds (2PPY* = a-R1-2-(b-R2-phenyl)pyridine*, other than 2ppy*, where R1 and R2 are substituents in the pyridine ring and the phenyl ring, respectively; a = 3–6, b = 2–5; X—bidentate bridging ligand).
R1R2μ−XNMR SolventX-ray (CCDC)GeometryActivity
3-methylHacetateCDCl3+pyridine-d5, CD3COCD3 [44,126]
H2-methylacetateCDCl3 [100,127]
H3-methylacetateCDCl3 [100]
H4-methylacetateCDCl3 [100,123]MAHPAO (1) [19] LUM1 [19]
H4-methyltrifluoroacetateCD2Cl2 [19]MAHPOC (1) [19] LUM1 [19]
H4-methyl1-ethyl-1,2,3,4-tetrazole-5-thiolateCDCl3 [64]
H4-methyl1-isopropyl-1,2,3,4-tetrazole-5-thiolate-N4,SCDCl3 [64]GAJNOV (1) (a) [64]trans(S,N)
H4-methyl1-n-butyl-1,2,3,4-tetrazole-5-thiolateCDCl3 [64]
H4-methyl1-allyl-1,2,3,4-tetrazole-5-thiolateCDCl3 [64]
H4-methylpyridine-2-thiolateCDCl3 [128] LUM1 [128]
H4-fluoroacetateCDCl3 [50]
H4-trifluoromethylacetateCD2Cl2 [17]WOMSAV (1) [17]
H2-chloroacetateCDCl3 [100]
H4-chloroacetateCDCl3 [100]
H4-bromoacetateCDCl3 [100]
H2-methoxyacetateCDCl3 [100]
H3-methoxyacetateCDCl3 [100]
H4-methoxyacetateCDCl3 [50,100]
H4-formylacetateCD2Cl2 [17]WOMQUN (1) [17]
H2-nitroacetateCDCl3 [100]
H3-nitroacetateCDCl3 [100]
6-(2,3-didodecyloxyphenyl) (2)2,3-didodecyloxy (2)ClCDCl3 [129]
(1) Both 2ppy* ligands are nearly in the same plane, exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (2) 6-(2,3-didodecyloxyphenyl)-2-(2,3-didodecyloxyphenyl)pyridine* is N(1),C(6′)*-chelating, monoanionic form of 2,6-bis(2,3-didodecyloxyphenyl)pyridine, deprotonated in one phenyl side group at the carbon C(6′) (while C(6″) in the second phenyl side group remains protonated and does not coordinate metal atom). (a) Dichloromethane solvate.

2.1.3. Pd(II)-2ArPY* Compounds

A total of 65 Pd(II)-2ArPY* compounds were reviewed, including 12 X-ray structures (for 11 species).

Mononuclear Pd(II)-2ArPY* Compounds

Besides Pd(II)-2ppy* and Pd(II)-2PPY* compounds, 52 Pd(II)-2ArPY* mononuclear (monomeric) species with various auxiliary ligands, having the general formula [Pd(2ArPY*)L1L2] (in case of L1 = L2, i.e., identical L ligands: [Pd(2ArPY*)L2]) or [Pd(2ArPY*)(LL)], as shown at Scheme 2 and Scheme 3 (left or right, respectively), were reported and characterised by NMR spectroscopy and/or by single crystal X-ray diffraction [10,11,12,29,33,50,70,74,81,82,92,122,123,130,131,132,133,134,135,136,137,138,139,140,141]. They are listed in Table 5, including 7 X-ray structures (for 7 species).
50 of them contain 2ArPY* type A ligands (2-benzylpyridine* [10,29,74,92,122,130,131,132,133], 2-(1-methylbenzyl)pyridine* [134], 2-(1-phenylbenzyl)pyridine* [135,136], 2-benzoylpyridine* and 2-(3-methylbenzoyl)pyridine* [11,12,33,50,70,81,82,123,137], 2-phenoxypyridine* [138], 2-phenylsulfanylpyridine* [138], and 2-anilinopyridine* [139]), while 2 of them contain 2ArPY* type B ligands (2-(naphth-1-yl)pyridine* [140] and 2-(naphth-2-yl)pyridine* [141]).
Table 5. NMR- and/or X-ray-studied monomeric [Pd(2ArPY*)L1L2] (in particular, [Pd(2ArPY*)L2]) and [Pd(2ArPY*)(LL)] compounds (2ArPY* ≠ 2PPY*; L1, L2, L—monodentate ligands; LL—bidentate ligands); R1 and R2 are substituents in the pyridine ring and the aryl ring, respectively.
Table 5. NMR- and/or X-ray-studied monomeric [Pd(2ArPY*)L1L2] (in particular, [Pd(2ArPY*)L2]) and [Pd(2ArPY*)(LL)] compounds (2ArPY* ≠ 2PPY*; L1, L2, L—monodentate ligands; LL—bidentate ligands); R1 and R2 are substituents in the pyridine ring and the aryl ring, respectively.
Parent 2ArPY* Ring SystemR1R2L1L2LLCounterionNMR SolventX-ray (CCDC)GeometryActivity
2-benzylpyridine*HH SNSNH unknown [10]
HH thiosulfateP(C6H5)3(CH2C6H5)+CDCl3 [130]
HH n-pentane-2,4-dionate (1) CDCl3 [131]
HH glycinate CD3OD+DMSO-d6 [29]
HH L-alaninate CD3OD [29]
HH D-valinate CD3OD [29]
HH D-leucinate CD3OD, DMSO-d6 [29]
HH L-prolinate-κ2-N,O CD3OD [29]TUMLAO [29]trans(N,N)
HH2,4,6-tris(trifluoromethyl)phenylH2O CDCl3 [122]
HHpyridineCl CDCl3 [132]
HH4-methylpyridineCl CDCl3 [132]
HH3,4-dimethylpyridineCl CDCl3 [132]
HH3,5-dimethylpyridineCl CDCl3 [131,132]
HH2,4,6-trimethylpyridineCl CDCl3 [132]
HH4-methoxycarbonylpyridineCl CDCl3 [132]
HH4-dimethylaminopyridineCl CDCl3 [132]
HH 2,2′-bipyridineNO3CD3CN [133] LUM1 [133]
HH 1,10-phenanthrolineNO3CD3CN [133] LUM1 [133]
HHmethyldiphenylphosphineCl CDCl3 [132]
HHtriphenylphosphineCl CDCl3 [132]
HH 2-diphenylphosphinobenzoate-κ2-P,O CDCl3 [74]FESCEO (a) [74]trans(P,N)CAT [74]
HH1,3-diisopropylbenzimidazol-2-ylideneBr CDCl3 [92]
2-(1-methylbenzyl)pyridine*HH n-pentane-2,4-dionate (1) CDCl3 [134]
HHpyridineCl CDCl3 [134]
HH 2,2′-bipyridineBF4CDCl3 [134]
HHtriphenylphosphineCl CDCl3 [134]
HH bis(diphenylphosphino)methaneBF4CDCl3 [134]
HH n-pentane-2,4-dionate (1) CDCl3 [135]
HH N-2,2,2-trichloro-1,1-dimethylethoxycarbonyl-L-leucine DMSO-d6 [136] (R)/(S)
2-benzoylpyridine*HH n-pentane-2,4-dionate (1) CDCl3 [11,12,137]
HH N-(4-n-hexoxybenzylidene-2-olate)-4-n-hexylaniline-κ2-N,Ophenolate CDCl3 [33]WOSYEI [33]trans(N,N)
HH3,5-dimethylpyridineCl CDCl3 [137]
HH pyridine-2-carboxylate CDCl3 [123]
HH bis(pyrid-2-yl)methanediolCH3COOD2O [50,123]
HH bis(pyrid-2-yl) ketoneCH3COOD2O [50,123]
HHtriphenylphosphinephtalimidate CDCl3 [70]
HHtriphenylphosphine4,5-dichlorophtalimidate CDCl3 [70]
HHtriphenylphosphinesaccharinate CDCl3 [70]
HH1,3,5-triaza-7-phosphaadamantane-Pphthalimidate-N CDCl3 [81]IJEYED [81]trans(P,N)CAT [81]
HH1,3,5-triaza-7-phosphaadamantanesaccharinate CDCl3 [81] CAT [81]
HH1-methyl-3-n-butylimidazol-2-ylideneCl CDCl3 [82] CAT [82]
HH1-methyl-3-n-butylimidazol-2-ylideneBr CDCl3 [82] CAT [82]
HH1-methyl-3-n-butylimidazol-2-ylideneI CDCl3 [82]
HH1-methyl-3-n-butylimidazol-2-ylidene-C2saccharinate-N CDCl3 [82]MUBQOR [82]trans(C,N)
H3-methyl bis(pyrid-2-yl)methanediolCH3COOD2O [50,123]
H3-methyl bis(pyrid-2-yl) ketoneCH3COOD2O [50,123]
H3-methyl hydroperoxy(bis(pyrid-2-yl))methanolCH3COOD2O [50]
2-phenoxypyridine*HH n-pentane-2,4-dionate (1) CDCl3 [138]
2-phenylsulfanylpyridine*HH n-pentane-2,4-dionate (1) CDCl3 [138]
2-anilinopyridine*HHacetonitrileacetonitrile BF4CDCl3+CD3CN [139]
(2-(naphth-1-yl)pyridine*HHpyridine-NCl CD2Cl2 [140]KOXWAX [140]trans(N,N)
(2-(naphth-2-yl)pyridine* pyridine-NCl CDCl3 [141]ZABFEN [141]trans(N,N)
(1) n-pentane-2,4-dionate anionic ligand (−1 charge) is also called acetylacetonate. (a) Diethyl ether solvate.

Dinuclear Pd(II)-2ArPY* Compounds

A total of 13 Pd(II)-2ArPY* dinuclear compounds, all corresponding to the dimeric [Pd(2ArPY*)(µ-X)]2 general formula, were NMR- and/or X-ray-studied [33,70,82,123,131,134,136,137,138,141,142,143,144,145].
Among them, 12 molecules contain 2ArPY* type A ligands (2-benzylpyridine* [131], 2-(1-methylbenzyl)pyridine* [134], 2-(1-phenylbenzyl)pyridine* [136,142], 2-benzoylpyridine* and 2-(3-methylbenzoyl)pyridine* [33,70,82,123,137], 2-phenoxypyridine* [138,143,144], and 2-phenylsulfoxylpyridine* [145]), while 1 contains 2ArPY* type B ligand (2-(naphth-2-yl)pyridine* [141]). All of these dimers are listed in Table 6, including 5 X-ray structures (for 4 species).
Table 6. NMR- and/or X-ray-studied dimeric [Pd(2ArPY*)(µ-X)]2 compounds (2ArPY* ≠ 2PPY*; X—bidentate bridging ligand); R1 and R2 are substituents in the pyridine ring and the aryl ring, respectively.
Table 6. NMR- and/or X-ray-studied dimeric [Pd(2ArPY*)(µ-X)]2 compounds (2ArPY* ≠ 2PPY*; X—bidentate bridging ligand); R1 and R2 are substituents in the pyridine ring and the aryl ring, respectively.
Parent 2ArPY* Ring SystemR1R2μ−XNMR SolventX-ray (CCDC)GeometryActivity
2-benzylpyridine*HHacetateCD2Cl2 [131]
2-(1-methylbenzyl)pyridine*HHClCDCl3 [134]
2-(1-phenylbenzyl)pyridine*HHClDMSO-d6 [136]YAPXEU (1) [136]
HHacetate-O,ODMSO-d6 [136,142]NOGKUQ (2) (a) [136,142]
2-benzoylpyridine*HHOHCDCl3 [82]
HHacetateCDCl3 [33,123,137]
HHphtalimidate-N,OCDCl3 [70]UMAPEF (2) (a) [70]trans(N,N)
HH4,5-dichlorophtalimidateCDCl3 [70]
HHsaccharinateCDCl3 [70]
H3-methylacetateCDCl3 [123]
2-phenoxypyridine*HHacetate-O,OCDCl3 [138,143,144]ASOGAR [143] ASOGAR 01 [144] both (2)
2-phenylsulfoxylpyridine*HHacetateCDCl3 [145]
2-(naphth-2-yl)pyridine*HHClDMSO-d6 [141]
(1) Both 2ArPY* ligands are nearly in the same plane, exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (2) Both 2ArPY* ligands are in different but nearly parallel planes (lying on the same side of the Pd-Pd axis), exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (a) Dichloromethane solvate.

2.1.4. Pd(II)-ArPY#* Compounds

A total of 162 Pd(II)-ArPY#* species were reviewed, including 45 X-ray structures (for 44 species).

Mononuclear Pd(II)-ArPY#* Compounds

Besides Pd(II)-2ppy*, Pd(II)-2PPY*, and Pd(II)-2ArPY* compounds, 128 mononuclear (monomeric) Pd(II)-ArPY#* species with various auxiliary ligands, having the general formula [Pd(ArPY#*)L1L2] (in case of L1 = L2, i.e., identical L ligands: [Pd(ArPY#*)L2]) or [Pd(ArPY#*)(LL)], as shown in Scheme 4 (left or right, respectively), were reported and characterised by NMR spectroscopy and/or by single crystal X-ray diffraction [7,9,10,11,12,13,14,16,17,18,20,21,22,23,30,31,33,38,39,40,42,45,46,51,67,69,71,73,74,75,76,78,79,92,103,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166]. All are listed in Table 7, including 29 X-ray structures (for 28 compounds).
Among them, 5 compounds contain 2-phenylquinoline* [20,51,67,146], 112—unsubstituted 7,8-benzoquinoline* [7,9,10,11,12,13,14,16,17,18,21,22,23,30,31,33,38,39,40,42,45,46,51,69,71,73,74,75,76,78,79,92,103,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166], and 11—variously substituted derivatives of 7,8-benzoquinoline* (7-methyl-, 7-chloro-, 7-methoxy-, 7-isopropoxy-, 7-formyl-, 7-cyano-, 7-nitro) [154,156].
Table 7. NMR- and/or X-ray-studied monomeric [Pd(ArPY#*)L1L2] (in particular, [Pd(ArPY#*)L2]) and [Pd(ArPY#*)(LL)] compounds (ArPY#* ≠ 2PPY*, 2ArPY*; L1, L2, L—monodentate ligands; LL—bidentate ligands); R1 and R2 are substituents in the pyridine-like ring and the aryl ring, respectively.
Table 7. NMR- and/or X-ray-studied monomeric [Pd(ArPY#*)L1L2] (in particular, [Pd(ArPY#*)L2]) and [Pd(ArPY#*)(LL)] compounds (ArPY#* ≠ 2PPY*, 2ArPY*; L1, L2, L—monodentate ligands; LL—bidentate ligands); R1 and R2 are substituents in the pyridine-like ring and the aryl ring, respectively.
Parent ArPY#* Ring SystemR1R2L1L2LLCounterionNMR SolventX-ray (CCDC)GeometryActivity
2-phenylquinoline*HH n-pentane-2,4-dionate (1) CDCl3 [146]
HH ethane-1,2-diamineClO4CD3CN [20]
HH 2,2′-bipyridineCF3SO3DMSO-d6 [51] BIO [51]
LUM2 [51]
HH 1,10-phenanthrolineCF3SO3DMSO-d6 [51] BIO [51]
LUM2 [51]
HHtriphenylphosphine-P4-methylphenylsulfonate-O CDCl3 [67]PORNIU (a) [67]trans(P,N)CAT [67]
7,8-benzoquinoline*HHCNCN K+CD3COCD3 [7] LUM1 [9]
HHCNCN (CH3CH2CH2CH2)4N+CD3COCD3 [9]
HH13CN13CN (CH3CH2CH2CH2)4N+CD2Cl2 [9]
HHCNCN Tl+CD3OD [9]REJHIZ [9] (2) LUM1 [9]
HH SNSNH unknown [10]
HH n-pentane-2,4-dionate (1) CDCl3 [11,12,13]
HH 1-phenyl-n-butane-1,3-dionate (3) CDCl3 [13]
HH 1,1,1,5,5,5-hexafluoro-n-pentane-2,4-dionate (1) CDCl3 [14]
HH 1,4,7-trithiacyclononane-κ3-S,S,SPF6CD3NO2 [16]VIYXUX [16] (4)
HH 1-oxa-4,7-dithiacyclononanePF6CD3NO2 [17]
HH ethane-1,2-diamineClDMSO-d6 [18]
HH ethane-1,2-diamineClO4CD3CN [21]
HH ethane-1,2-diamineClO4DMF-d7 [147]
HH ethane-1,2-diamineCF3SO3DMSO-d6 [22]
HH N,N,N’,N’-tetramethylethane-1,2-diamineCF3SO3CDCl3 [22]
HHacetateacetate (CH3CH2CH2CH2)4N+CD2Cl2 [148]
HHacetonitrileacetonitrile ClO4CD3CN [23] LUM2 [23]
HHacetonitriletrifluoroacetate CD3CN [149]
HH diethylaminocarbodithioate CDCl3 [13,150]
HH O,O’-diethyldithiophosphate CDCl3 [13]
HH 2-formylphenolate CDCl3 [13]
HH 2-(phenyliminomethyl)phenolate-κ2-N,O CDCl3 [13]POKSIS [13] POKSIS 01 [30]trans(N,N)LUM2 [30]
HH 2-(4-chlorophenyliminomethyl)phenolate-κ2-N,O) CDCl3 [13]POKSOY [13]trans(N,N)LUM2 [30]
HH 2-(naphth-1-yliminomethyl)phenolate CDCl3 [30] LUM2 [30]
HH 2-aminobenzenethiolate CDCl3 [31] LUM2 [31]
HH N-(4-n-hexoxybenzylidene-2-olate)-4-n-hexylaniline CDCl3 [33]
HH 1-methoxynaphth-8-yl CDCl3 [151]
HH 2-formylpyrrolate-κ2-N,O CDCl3 [13]ASEHEM [31]trans(N,N)LUM2 [31]
HHpyridineCl CDCl3 [103]
HHpyridineacetate CDCl3 [103]
HHpyridine-Nsuccinimidate-N CDCl3 [45]ANOJOD [45]trans(Nsucc,N)
HHpyridine-Nsaccharinate-N CDCl3 [39]DAQNEQ (a) [39]trans(Npy,N)LUM2 [39]
HHpyridine-d54-trifluoroacetylbenzoate CDCl3+pyridine-d5 [38]
HH2-methylpyridineCl DMSO-d6 [152] BIO [152]
HH3-methylpyridine-NCl DMSO-d6 [152]FIBRIV [152] trans(N,N)BIO [152]
HH2,6-dimethylpyridine-NF CDCl3 [40]FULXAM (a) [40]trans(N,N)
HH2,6-dimethylpyridineI CDCl3 [40]
HH2-aminopyridineCl DMSO-d6 [152] BIO [152]
HH 2-aminomethylpyridineClDMSO-d6 [152] BIO [152]
HH2-amino-3-methylpyridineCl DMSO-d6 [152] BIO [152]
HH2-amino-5-chloropyridine-NCl DMSO-d6 [152]NIJXIR [152]trans(N,N)BIO [152]
HH 2-phenylpyridine* (5) CDCl3 [42]
HH 2-(thiophen-2-yl)pyridine* (6) CDCl3 [42]
HH 2,2′-bipyridineCF3SO3DMSO-d6 [22,51] BIO [51]
LUM1 [51]
HH 4,4′-dimethyl-2,2′-bipyridineCF3SO3DMSO-d6 [22]
HH 4,4′-di-n-nonyl-2,2′-bipyridineCF3SO3CDCl3 [22]
HH 1,10-phenanthrolineCF3SO3DMSO-d6 [22,51] BIO [51]
LUM2 [51]
HHquinolinesaccharinate CDCl3 [39] LUM1 [39]
HH quinolin-8-olate CDCl3 [13]
HHacridinesaccharinate CDCl3 [39] LUM1 [39]
HH 7,8-benzoquinoline* (7) CDCl3 [42,46]TAXHAE [153]trans(C,N)
HH1H-imidazoleCl DMSO-d6 [152] BIO [152]
HH2-aminothiazoleCl DMSO-d6 [152] BIO [152]
HH2-aminobenzimidazoleCl DMSO-d6 [152] BIO [152]
HH2-aminobenzothiazole-NCl DMSO-d6 [152]NIJXEN [152]trans(N,N)BIO [152]
HH N-(2-(pyrid-2-yl)phenyl)benzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-methylbenzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-tert-butyl-benzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-phenylbenzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-fluorobenzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-chlorobenzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-cyanobenzenesulfonamidate CDCl3 [154]
HH N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154,155]
HH N-(2-(pyrid-2-yl)phenyl)-4-nitrobenzenesulfonamidate CDCl3 [154]
HH N-(2-(4-methylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
HH N-(2-(4-trifluoromethylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
HH N-(2-(4-bromopyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
HH N-(2-(4-methoxypyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
HH N-(2-(4-methoxycarbonylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
HH (pyrazolate-1-yl)2B(pyrazolate-1-yl)2 CDCl3 [156,157]
HHtricyclohexylphosphine-P4-methoxyphenylethynyl-C CD2Cl2 [158]VUYKAE [158]trans(C,N)
HHdimethylphenylphosphine1-methoxynaphth-8-yl CDCl3 [151]
HHdiphenylphosphineCl CDCl3 [159]
HH(phenylethynyl)diphenylphosphineCl CDCl3 [159]
HHtriphenylphosphine-PF CDCl3 [40]FULXEQ (a) [40]trans(P,N)
HHtriphenylphosphineI CDCl3 [40]
HHtriphenylphosphinesuccinimidate CDCl3 [69] CAT [69]
HHtriphenylphosphinemaleimidate CDCl3 [69] CAT [69]
HHtriphenylphosphine-Pphthalimidate-N CDCl3 [69]FELQET [69]trans(P,N)CAT [69]
HHtris(4-fluorophenyl)phosphinesuccinimidate CDCl3 [69] CAT [69]
HHtris(4-fluorophenyl)phosphinemaleimidate CDCl3 [69] CAT [69]
HHtris(4-fluorophenyl)phosphinephthalimidate CDCl3 [69] CAT [69]
HHtris(4-methoxyphenyl)phosphinesuccinimidate CDCl3 [69] CAT [69]
HHtris(4-methoxyphenyl)phosphinemaleimidate CDCl3 [69] CAT [69]
HHtris(4-methoxyphenyl)phosphinephthalimidate CDCl3 [69] CAT [69]
HH(2-formylphenyl)diphenylphosphineCl CDCl3 [71]
HH T(2-formylphenyl)diphenylphosphineCF3SO3CDCl3 [71]
HH 2-diphenylphosphinobenzoate-κ2-P,O CDCl3 [73,74]EQIROL (b) [73]trans(P,N)CAT [74]
HH N-isopropyl-2-diphenylphosphinobenzamide-κ2-P,OPF6CDCl3 [73]EQIRUR (a) [73]trans(P,N)
HH N-phenyl-2-diphenylphosphinobenzamidePF6CDCl3 [73]
HH N-isopropyl-2-diphenylphosphinobenzamidate CDCl3 [73]
HH N-phenyl-2-diphenylphosphinobenzamidate CDCl3 [73]
HH(2-(isopropylaminocarbonyl)phenyl)diphenylphosphine-PCl CDCl3 [73]EQIREB (c) [73]trans(P,N)
HH(2-(phenylaminocarbonyl)phenyl)diphenylphosphineCl CDCl3 [73]
HH(2-(isopropylaminocarbonyl)phenyl)diphenylphosphineacetate CDCl3 [73]
HH(2-(phenylaminocarbonyl)phenyl)diphenylphosphineacetate CDCl3 [73]
HH 2-(diphenylphosphinoxymethyl)pyridinePF6CD3COCD3 [75]
HH 2-(diphenylphosphinoamino)pyridinePF6CD3COCD3 [75]
HH 2-(diphenylphosphinoazanido)pyridine CDCl3 [75]
HH CH3CH2OCOCHCOCH2P(C6H5)3 (8,9)ClO4CD2Cl2 [76]
HH C6H5NHCSC(P(C6H5)3)COOCH3 (10A)ClO4CD2Cl2 [78]
HH NCC(P(C6H5)3)C(COOCH3)CHCOOCH3 (10B)ClO4CDCl3 [78]
HHC(COOCH3)C(COOCH3)P(C6H5)3 (10C)triphenylphosphine ClO4CD2Cl2 [79]
HH 1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-chlorobenzoyl)methylClO4DMSO-d6 [160] CAT [159]
HH 1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-bromobenzoyl)methylClO4DMSO-d6 [160] CAT [159]
HH 1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-methoxybenzoyl)methylClO4DMSO-d6 [160] CAT [159]
HH 1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-nitrobenzoyl)methylClO4DMSO-d6 [160] CAT [159]
HH(diphenylphosphorylamino)diphenylphosphineCl CDCl3 [161]
HH (diphenylphosphorylazanido)diphenylphosphine CDCl3 [161]
HH 1-((diphenylphosphorylmethyl)diphenylphosphino)-1-(4-nitrobenzoyl)methylidene-κ2-Cmethyl,OCO CDCl3 [162]CALWIZ (d) [162]trans(C,N)
HH 2-(diisopropylphosphinomethyl)pyridineCH3COOCD2Cl2 [163]
HH 7-(diisopropylphosphinomethyl)-1,8-naphthyridine-2-one-κ2-N8,PCH3COOCD2Cl2 [163]VAHTAD (a) [163]trans(P,N)
HH 7-(diisopropylphosphinomethyl)-1,8-naphthyridine-2-one-κ2-N8,PB(3,5-bis(trifluoromethyl)phenyl)4CD2Cl2 [163]VAHSUW (a) [163]trans(P,N)
HH1-methyl-3-(dibenzofuran-4-yl)imidazol-2-ylidene-C2I CDCl3 [164]HEXTIR [164]trans(C,N)
HH1-isopropyl-3-(2-hydroxy-2-methylpropyl)imidazol-2-ylidene-C2Cl CD2Cl2 [165]LUXYUZ [165]trans(C,N)
HH 1-isopropyl-3-(2-oxy-2-methylpropyl)imidazol-2-ylidene CD3CN [165] CAT [165]
HH1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylideneCl CDCl3 [166] CAT [166]
HH1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-C2Cl CDCl3 [166]ZIGPEN [166]trans(C,N)CAT [166]
HH1,3-diisopropylbenzimidazol-2-ylidene-C2Br CDCl3 [92]QEZFOT [92]trans(C,N)
H7-methyl N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
H7-chloro N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
H7-methoxy N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
H7-isopropoxy N-(7,8-benzoquinolin-10-yl)-4-methoxybenzenesulfonamidate-κ2-Nbqn’,Namidate CDCl3 [156]CAMSAM [156]trans(Namidate,Nbqn)
H7-isopropoxy N-(7,8-benzoquinolin-10-yl)-4-methoxybenzenesulfonamidate-κ2-Nbqn’,Namidate CDCl3 [156]CAMTAN (a) [156]trans(Nbqn’,Nbqn)
H7-formyl N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
H7-cyano N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
H7-nitro N-(2-(pyrid-2-yl)phenyl)benzenesulfonamidate CDCl3 [154]
H7-nitro N-(2-(pyrid-2-yl)phenyl)-4-tert-butylbenzenesulfonamidate CDCl3 [154]
H7-nitro N-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
H7-nitro N-(2-(4-methylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate CDCl3 [154]
(1) n-pentane-2,4-dionate anionic ligand (−1 charge) is also called acetylacetonate. (2) This ionic compound ([Pd(7,8-benzoquinoline*)(CN)2] Tl+) can also be regarded as pentacoordinated [PdTl(7,8-benzoquinoline*)(CN)2] neutral molecule. (3) 1-phenyl-n-butane-1,3-dione anionic ligand (−1 charge) is also called benzoylacetonate. (4) Pentacoordinated complex (CNS3 chromophore). (5) This [Pd(7,8-benzoquinoline*)(2ppy*)] compound is present also in Table 1. (6) 2-(thiophen-2-yl)pyridine* is N(1),C(3′)*-chelating, monoanionic form of 2-(thiophen-2-yl)pyridine, deprotonated in the thiophen side group at the carbon C(3′). (7) This is [Pd(7,8-benzoquinoline*)2] compound. (8) CH3CH2OCOCHCOCH2P(C6H5)3 is a neutral ylide ligand having (−1) charge at –CH– and (+1) charge at P. (9) Mixture of two isomers differing in the position of –COOCH2CH3 or -COCH2P(C6H5)3 moieties in respect to pyridine and phenyl rings of 7,8-benzoquinoline*. (10A–10C) C6H5NHCSC(P(C6H5)3)COOCH3 (10A), NCC(P(C6H5)3)C(COOCH3)CHCOOCH3 (10B), and C(COOCH3)C(COOCH3)P(C6H5)3 (10C) are neutral ylide ligands having (−1) charge at –C– (P-bonded) and (+1) charge at P. (a) Dichloromethane solvate. (b) Chloroform solvate. (c) Methanol solvate. (d) Acetone solvate.

Dinuclear and Oligonuclear Pd(II)-ArPY#* Compounds

A total of 34 Pd(II)-ArPY* di- and oligonuclear compounds were reported; 32 of them were NMR- and/or X-ray-studied [13,31,33,39,40,44,45,47,78,99,102,103,128,148,149,150,154,155,156,157,158,163,167,168,169].
A total of 30 Pd(II)-ArPY* molecules are dinuclear [13,31,33,39,40,44,45,47,78,99,102,103,128,148,149,150,154,155,156,157,158,167,168,169]. 29 of them correspond to the dimeric [Pd(ArPY*)(µ-X)]2 general formula [13,31,33,39,40,44,45,47,78,99,102,103,128,148,149,150,154,155,156,157,158,167,168,169], while 1 corresponds to the [Pd(ArPY*)(µ-XX)0.5]2 one [102,103]. On the other hand, all of them contain a 7,8-benzoquinoline* ring system, i.e., unsubstituted 7,8-benzoquinoline* (25 species) [13,31,33,39,40,44,45,47,78,99,102,103,128,148,149,150,154,155,156,157,158,167,168,169] or its variously substituted derivatives (5 species: 7-methyl-, 7-chloro-, 7-iodo-, 7-isopropoxy-, 7-formyl-) [102,103,156]. All of these dimers are listed in Table 8, including 12 X-ray structures (for 12 species).
Table 8. NMR- and/or X-ray-studied dimeric [Pd(ArPY#*)(µ-X)]2 or [Pd(ArPY#*)(µ-XX)0.5]2 compounds (ArPY#* ≠ 2PPY*, 2ArPY*; X—bidentate bridging ligand, Y—monodentate ligand); R1 and R2 are substituents in the pyridine-like ring and the aryl ring, respectively.
Table 8. NMR- and/or X-ray-studied dimeric [Pd(ArPY#*)(µ-X)]2 or [Pd(ArPY#*)(µ-XX)0.5]2 compounds (ArPY#* ≠ 2PPY*, 2ArPY*; X—bidentate bridging ligand, Y—monodentate ligand); R1 and R2 are substituents in the pyridine-like ring and the aryl ring, respectively.
Parent ArPY#* Ring SystemR1R2μ−X or µ−XXCounterionNMR SolventX-ray (CCDC)GeometryActivity
7,8-benzoquinolineHHCl DMSO-d6 [103,156,157,167] BIO [152]
HHI CDCl3 + pyridine-d5 [40]
HHOH COHNET (1) [99]
HHacetate-O,O CDCl3, CD2Cl2 [33,44,45,47,102,103,148,150,154,155,156,157,167,168,169]YULCUE (2) [45,102,103,148,169] WEFFIY (2) (a) [148,169] PEMVEK (2) (b) [148] CAT [102]
HHacetate-d3 CDCl3 [102,103]
HHpropionate CD2Cl2 [103]
HHn-hexanoate CDCl3 [167]
HHbenzoate CDCl3 [103]
HH½ benzene-1,3-bis(2,2-dimethylpropionate) CDCl3 [102,103] CAT [102]
HHtrifluoroacetate-O,O CD2Cl2 [149]EBOGUA (2) [149]
HH4-fluorobenzoate CDCl3, CD2Cl2 [103]
HH4-bromobenzoate CDCl3 [103]
HH4-acetylbenzoate CD2Cl2 [103]
HH4-nitrobenzoate CD2Cl2 [103]
HHsuccinimidate-N,O CD2Cl2, CD2Cl2+C6D6 [45]ANOJIX (2) (c) [45]trans(N,N)CAT [45,69]
HHmaleimidate CAT [69]
HHphthalimidate CAT [69]
HHsaccharinate CDCl3 [39] CAT [39]
LUM1 [39]
HHpyridine-2-thiolate CDCl3 [13,128] LUM1 [128]
LUM2 [31]
HHpyrimidine-2-thiolate CDCl3 [31] LUM2 [31]
HH1-methylimidazol-2-thiolate-S,N3 CDCl3 [31]ASEHAI (2) (d) [31] LUM2 [31]
HHbenzimidazol-2-thiolate CDCl3 [31] LUM2 [31]
HH2H-2-oxo-7-((pyrid-2-yl)methyl)(methyl)aminomethyl)-1,8-naphthyridin-1-ide-N1,N8 CDCl3 [158]VUYKEI (2) VUYHAB (2) (a) VUYGUU (2) (e) [158]
HHµ-2H-2-oxo-7-(bis((pyrid-2-yl)methyl)aminomethyl)-1,8-naphthyridin-1-ide-N1,N8 CDCl3 [158]VUYGOO (2) (a) [158]
HHSC(NHC6H5)C(P(C6H5)3)CN (3)2ClO4DMSO-d6 [78]
HHdiethylphosphonate-P,O EBOHEL (1) [149]trans(P,N)
H7-methylacetate CD2Cl2 [103]
H7-chloroacetate CDCl3, CD2Cl2 [103]
H7-iodoacetate CD2Cl2 [103]
H7-isopropoxyacetate CDCl3 [156]
H7-formylacetate CD2Cl2 [103]
(1) Both ArPY#* ligands are nearly in the same plane, exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (2) Both ArPY#* ligands are in different but nearly parallel planes (lying on the same side of the Pd-Pd axis), exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (3) SC(NHC6H5)C(P(C6H5)3)CN is a zwitterionic ligand having (−1) charge at S and (+1) charge at P (also some mesomeric ylide forms are possible). (a) Dichloromethane solvate. (b) 1,1,2,2-tetracyanoethene dichloromethane solvate. (c) Dichloromethane diethyl ether solvate. (d) Chloroform solvate. (e) Dichloromethane tetrahydrofuran solvate.
Additionally, 4 Pd(II)-ArPY#* compounds (and 4 X-ray structures) contain more than two palladium atoms, their molecular formulae being as follows: [Pd(7,8-benzoquinoline*)(µ-acetate)2Pd(µ-acetate)(µ-Cl)Pd(7,8-benzoquinoline*)] (X-ray structure YULDEP) [102,103]; [(Pd(7,8-benzoquinoline*)(acetate))2(Pd(7,8-benzoquinoline*))23-7-diisopropylphosphinomethyl-1,8-naphthyridine-2-one-P,N1,O))2] (NMR in CD2Cl2; X-ray: VAHTUX for cyclohexane toluene solvate); [(Pd(7,8-benzoquinoline*))44-(7-diisopropylphosphinomethyl-1,8-naphthyridine-2-one-P,N1,N8,O))2](B(C6H5)4)2 (NMR in CD2Cl2; X-ray: VAHVAF for cyclohexane tetrahydrofuran solvate); and [(Pd(7,8-benzoquinoline*))44-(7-diisopropylphosphinomethylidene-1,8-naphthyridine-2-one-8-ide-P,N1,N8,O))2] (X-ray: VAHVEJ for diethyl ether solvate) [163]. The details of Pd(II) linking in these oligonuclear (tri- and tetranuclear) species are in the original papers.

2.2. Pd(III) Compounds

The Pd(III) compounds with 2-arylpyridines* are much more rare than the Pd(II) ones, nevertheless, 27 species were reviewed; all were NMR- and/or X-ray-studied (14 X-ray structures for 9 species) [44,45,102,103,148,167,168].
5 of them are with 2ppy* or its derivatives [44,45,103], while 22 are with 7,8-benzoquinoline* or its derivatives [44,45,102,103,148,167,168]; in the case of the other 2-arylpyridines*, no examples have been found.
None of these molecules are mononuclear, whereas 23 are dinuclear [44,45,102,103,148,167,168] (22 exhibit the dimeric general formula [Pd(2-arylpyridine*)Y(µ-X)]2 (in one case with different Y1, Y2 ligands in both halves of the dimer: [Pd(7,8-benzoquinoline*)Cl(µ-succinimidate)2Pd(7,8-benzoquinoline*)(acetate)] [45]), while 1 exhibits the [Pd(2-arylpyridine*)Y(µ-XX)0.5]2 one), and 4 are polynuclear [167,168].
All 23 Pd(III)-(2-arylpyridine*) dimers are electrically neutral molecules. They are listed in Table 9, including 5 X-ray structures.
Table 9. NMR- and/or X-ray-studied dimeric Pd(III) compounds with 2-arylpyridines*, of the general formula [Pd(2-arylpyridine*)Y(µ-X)]2 and [Pd(2-arylpyridine*)Y(µ-XX)0.5]2 (X—bridging bidentate ligand, XX—bridging tetradentate ligand, Y—monodentate ligand); R1 and R2 are substituents in the pyridine or pyridine-like ring and the aryl ring, respectively.
Table 9. NMR- and/or X-ray-studied dimeric Pd(III) compounds with 2-arylpyridines*, of the general formula [Pd(2-arylpyridine*)Y(µ-X)]2 and [Pd(2-arylpyridine*)Y(µ-XX)0.5]2 (X—bridging bidentate ligand, XX—bridging tetradentate ligand, Y—monodentate ligand); R1 and R2 are substituents in the pyridine or pyridine-like ring and the aryl ring, respectively.
Parent 2-arylpyridine* Ring SystemR1R2Yµ−X or µ−XXNMR SolventX-ray (CCDC)GeometryActivity
2-phenylpyridine*HHacetate-Oacetate-O,OCD2Cl2 [44,45]CUHQAY (1) (a) [44,45] CAT [44,45]
HH4-nitrobenzoateBenzoateCD2Cl2 [103]
HHCl2,2,3,3-tetramethylsuccinimidateCD2Cl2 [45]
HHacetate2,2,3,3-tetramethylsuccinimidateCD2Cl2 [45]
3-methylHacetateacetateCD2Cl2 [44]
7,8-benzoquinoline*HHFacetate-O,O PAHREX (1) (a) [167]
HHClacetate-O,OCD2Cl2 [102,103,148,167]YULDAL (1) (b) [102,103] CAT [102]
HHCln-hexanoateCD2Cl2 [167]
HHBracetate-O,OCDCl3 [102]
HHtrifluoromethylacetateCD2Cl2 [148]
HHacetate-Oacetate-O,OCD2Cl2 [44,102,103,148]YULDIT (1) (a) [102,103]
HHacetateacetate-d3CD2Cl2 [102,103]
HHpropionatepropionateCD2Cl2 [103]
HHCl½ benzene-1,3-bis(2,2-dimethylpropionate)CDCl3 [102,103]
HHClbenzoateCD2Cl2 [103]
HHCl4-fluorobenzoateCD2Cl2 [103]
HHCl4-bromobenzoateCD2Cl2 [103]
HHCl4-acetylbenzoateCD2Cl2 [103]
HHCl4-nitrobenzoateCD2Cl2 [103]
HH½ Cl,½ acetatesuccinimidateCD2Cl2 [45]
H7-methylClacetateCD2Cl2 [103]
H7-chloroFacetate-O,OCD2Cl2 [168]PIVGEI (1) (a) [168]
H7-chloroClacetateCD2Cl2 [103]
H7-iodoClacetateCD2Cl2 [103]
(1) Both 2-arylpyridine* ligands are in different but nearly parallel planes (lying on the same side of the Pd-Pd axis), exhibiting transoid geometry (in respect to the position of their nitrogen atoms). (a) Dichloromethane solvate. (b) Dichloromethane iodobenzene solvate.
All 4 Pd(III) polynuclear species are ionic, containing [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]na+ [167,168], [Pd(7,8-benzoquinoline*)(µ-n-hexanoate)]na+ [167], or [Pd(7-chloro-7,8-benzoquinoline*)(µ-acetate)]na+ [168] (a = n or n/2) cations and F, PF6, or BF4 anions in various amounts [167,168].
Their exact molecular formulae are as follows: [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]nFn (NMR in CD2Cl2 [167,168]; X-ray: PAHRIB for dichloromethane solvate [167]) or [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]nF2n/3(PF6)n/3 (X-ray: PIVFUX for dichloromethane solvate [168]), and [Pd(7,8-benzoquinoline*)(µ-n-hexanoate)]n(BF4)n (NMR in CD2Cl2 [167]), as well as [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]nFn/2 (NMR in CD2Cl2 [167,168]; X-ray: PAHSOI, PAHSOI 01, PAHSOI 02, PAHSOI 03, PAHSOI 04, PAHSOI 05 for dichloromethane solvate [167]) and [Pd(7-chloro-7,8-benzoquinoline*)(µ-acetate)]nFn/2 (NMR in CD2Cl2 [168]; X-ray: PIVGAE for dichloromethane solvate [168]). The two latter compounds contain [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]n(n/2)+ and [Pd(7-chloro-7,8-benzoquinoline*)(µ-acetate)]n(n/2)+ cations, in which the formal palladium oxidation state is +2.5, suggesting the simultaneous presence of Pd(II) and Pd(III) atoms.

2.3. Pd(IV) Compounds

The Pd(IV) compounds with 2-arylpyridines* are also more rare than the Pd(II) ones, but more abundant than those of Pd(III). Thus, 88 compounds were reviewed; all were NMR- and/or X-ray-studied (16 X-ray structures for 16 species) [37,38,44,45,46,47,48,50,80,123,148,154,155,156,157,165,170,171].
A total of 26 of them are with 2ppy* (23 of [Pd(2ppy*)2L1L2] type and 3 of [Pd(2ppy*)ABCD] type; for explanation see below) [37,38,44,45,46,47,48,50,80,165,170], while 12 with 2PPY* ≠ 2ppy* (R1 = H, R2 = 3-methyl-, 4-methyl-, 3-fluoro-, 4-fluoro-, 3-chloro-, 4-methoxy-) [37,38,50,123] and 4 with 2ArPY* ≠ 2PPY* (2-benzylpyridine* derivatives: 2-(1-hydroxybenzyl-1-olate)pyridine* and 2-(1-hydroxy-3-methylbenzyl-1-olate)pyridine*; in these ligands both methylene bridge hydrogens are substituted by two OH groups (one deprotonated), so they are dianionic and tridentate, chelating Pd(IV) by N(1), C(6′) and O) [50,123]. Then, a total of 46 of them are with ArPY#* (30 with 7,8-benzoquinoline and 16 with its substituted derivatives: 7-methyl-, 7-chloro-, 7-methoxy-, 7-isopropoxy-, 7-formyl-, 7-cyano-, and 7-nitro) [37,38,46,148,154,155,156,157,165,171].
All of Pd(IV)-(2-arylpyridine*) compounds, listed in Table 10 (including 16 X-ray structures for 16 species) are mononuclear (monomeric).
A total of 35 of them have the [Pd(2-arylpyridine*)2L1L2] (in particular, [Pd(2-arylpyridine*)2L2]) general formula (Table 10 top) [37,38,44,45,46,47,48,170], whereas none exhibits the [Pd(2-arylpyridine*)2(LL)] one (thus, Pd(IV) compounds containing two 2-arylpyridine* ligands and one chelating LL ligand remain unknown). Then, in all cases both 2-arylpyridine* ligands are, for a given Pd(IV) compound, identical (no [Pd(2-arylpyridine*)1(2-arylpyridine*)2L1L2] species were reported). Moreover, these [Pd(2-arylpyridine*)2L1L2] molecules are always electrically neutral.
In contrast, 53 compounds correspond to many types of the [Pd(2-arylpyridine*)ABCD] general formula, where A, B, C, and D denote variable numbers of mono-, bi- or tridentate ligands—in various combinations resulting in the coordination number 6 and in the electric charges ranging from 0 to +2 (Table 10 bottom) [50,80,123,148,154,155,156,157,165,171].
Table 10. NMR- and/or X-ray-studied monomeric Pd(IV) compounds with 2-arylpyridines*, of the general formulae [Pd(2-arylpyridine*)2L1L2] (in particular, [Pd(2-arylpyridine*)2L2]) (top; L1, L2, L denote monodentate ligands) or [Pd(2-arylpyridine*)ABCD] (bottom; A, B, C, D denote mono-, bi- or tridentate ligands in various numbers and combinations). R1 and R2 are substituents in the pyridine or pyridine-like ring and the aryl ring, respectively.
Table 10. NMR- and/or X-ray-studied monomeric Pd(IV) compounds with 2-arylpyridines*, of the general formulae [Pd(2-arylpyridine*)2L1L2] (in particular, [Pd(2-arylpyridine*)2L2]) (top; L1, L2, L denote monodentate ligands) or [Pd(2-arylpyridine*)ABCD] (bottom; A, B, C, D denote mono-, bi- or tridentate ligands in various numbers and combinations). R1 and R2 are substituents in the pyridine or pyridine-like ring and the aryl ring, respectively.
[Pd(2-arylpyridine*)2L1L2]
Parent 2-arylpyridine* Ring SystemR1R2L1L2NMR SolventX-ray (CCDC)GeometryActivity
2-phenylpyridine*HHClClCDCl3 [47,170]
HHacetate-Oacetate-OCDCl3, CD3COCD3, CD3COOD [38,44,45]LUFQIN (a) [38] ZUNYOY (b) [48]trans(O,N2ppyA), trans(C2ppyA, N2ppyB)CAT [44,45]
HHacetate (1) acetate-d3 (1)CD3COCD3 [38]
HHacetate-d3acetate-d3CDCl3 [38]
HHacetateClDMSO-d6 [38]
HHacetate-d3ClDMSO-d6 [38]
HHn-decanoaten-decanoateCDCl3 [37]
HHn-decanoate-Oacetate-OCDCl3 [38]LUFQOT [38]trans(Oacetate, N2ppyA), trans(C2ppyA, N2ppyB)
HHbenzoatebenzoateCDCl3 [37]
HH4-methylbenzoate4-methylbenzoateCDCl3 [37]
HH4-fluorobenzoate4-fluorobenzoateCDCl3 [37]
HH4-trifluoromethylbenzoate4-trifluoromethylbenzoateCDCl3 [37]
HH4-chlorobenzoate4-chlorobenzoateCDCl3 [37]
HH4-bromobenzoate4-bromobenzoateCDCl3 [37]
HH4-methoxybenzoate4-methoxybenzoateCDCl3 [37]
HH4-phenoxybenzoate4-phenoxybenzoateCDCl3 [37]
HH4-acetylbenzoate4-acetylbenzoateCDCl3 [37]
HH4-trifluoroacetylbenzoate4-trifluoroacetylbenzoateCD3COCD3 [38]
HH4-cyanobenzoate4-cyanobenzoateCDCl3 [37]
HH4-nitrobenzoate-O4-nitrobenzoate-OCDCl3 [37]QAVCAS (c) [37]trans(O,N2ppyA), trans(C2ppyA,N2ppyB)
HHtrifluoromethylsulfonylClDMSO-d6 [46]
HH4-methylphenylsulfonylClCD2Cl2 [46]
HHbenzylsulfonylClCD2Cl2 [46]
HH4-fluorophenylsulfonylClCD2Cl2 [46]
HH4-methoxyphenylsulfonylClCD2Cl2 [46]
HHsuccinimidate-NClCDCl3,DMSO-d6 [170]PITZOI (b) [170]trans(Cl,N2ppyA), trans(C2ppyA,N2ppyB)
H3-methylbenzoatebenzoateCDCl3 [37]
H3-methyl4-chlorobenzoate4-chlorobenzoateCDCl3 [37]
H3-methyl4-bromobenzoate4-bromobenzoateCDCl3 [37]
H3-methyl4-acetylbenzoate4-acetylbenzoateCDCl3 [38]
H3-fluoro4-acetylbenzoate4-acetylbenzoateCDCl3 [38]
H3-chloro4-acetylbenzoate4-acetylbenzoateCDCl3 [38]
7,8-benzoquinoline*HHacetateacetateCD3COCD3 [38]
HHacetateClDMSO-d6 [38]
HHn-decanoaten-decanoateCDCl3 [37]
HHnonadecafluoro-n-decanoatenonadecafluoro-n-decanoateCD3COCD3 [38]
HH4-trifluoroacetylbenzoate4-trifluoroacetylbenzoateCD3COCD3 [38]
HH4-methylphenylsulfonylClCD2Cl2 [46]
[Pd(2-arylpyridine*)ABCD]
Parent2-arylpyridine*ring systemR1R2ABCDCounterionNMR SolventX-ray (CCDC)GeometryActivity
2-phenylpyridine*HHhydroxybis(pyrid-2-yl)methanolateOHCH3COOD2O [50]
HH2-(N,P,P-triphenylphosphorimido-P-yl)phenylacetateacetate CD2Cl2 [80]
HH1-isopropyl-3-(2-oxy-2-methylpropyl)imidazol-2-ylidenesuccinimidateBr CD3CN [165]
H4-methylhydroxy(bis(pyrid-2-yl))methanolateClClD2O [123]
H4-methylhydroxy(bis(pyrid-2-yl))methanolateBrBrD2O [123]
H4-methylhydroxy(bis(pyrid-2-yl))methanolate (2)OH (2)CH3COOD2O [50,123]
H4-methylhydroxy(bis(pyrid-2-yl))methanolateH2O2ClD2O [123]
H4-methylhydroxy(bis(pyrid-2-yl))methanolateH2O2BrD2O [123]
H4-methylhydroxy(bis(pyrid-2-yl))methanolate-κ3-N,N,OH2O2CF3COOD2O [123]APADAX (d) [123]trans(N,Nbqn), trans(N,Cbqn)
H4-fluorohydroxy(bis(pyrid-2-yl))methanolate (2)OH (2)CH3COOD2O [50]
H4-methoxyhydroxy(bis(pyrid-2-yl))methanolate (2) OH (2)CH3COOD2O [50]
2-(1-hydroxybenzyl-1-olate)pyridine*-κ3-N,C,OHHhydroxy(bis(pyrid-2-yl))methanolate-κ3-N,N,OnoneCH3COOD2O, CD3COOD [123]APACIE (e) [123]trans(N,Nbqn), trans(N,Cbqn)
HHhydroxy(bis(pyrid-2-yl))methanolatenoneCF3COODMSO-d6 [123]
HHhydroxy(bis(pyrid-2-yl))methanolatenoneBF4DMSO-d6 [123]
HHoxy(bis(pyrid-2-yl))methanolate-κ3-N,N,Onone CD3OD, CF3CH2OD [123]APACUQ (f) [123]trans(N,Nbqn), trans(N,Cbqn)
H3-methylhydroxy(bis(pyrid-2-yl))methanolatenoneCH3COOD2O [50,123]
H3-methylhydroxy(bis(pyrid-2-yl))methanolatenoneCF3COODMSO-d6 [123]
H3-methylhydroxy(bis(pyrid-2-yl))methanolatenoneBF4DMSO-d6 [123]
H3-methyloxy(bis(pyrid-2-yl)methanolate-κ3-N,N,Onone CD3OD [123]APADEB (g) [123]trans(N,Nbqn), trans(N,Cbqn)
7,8-benzoquinoline *HHacetate-Oacetate-Otrifluoromethyl-CH2O CDCl3, CD2Cl2 [148,171]OPOQAM [171] WEFFEU (c) [148]trans(Oacetate,Nbqn)(OH2O,Cbqn)
HHN-(2-(pyrid-2-yl)phenyl)benzenesulfonamidateFBF4CD3CN [154]
HHN-(2-(pyrid-2-yl)phenyl)-4-methylbenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(pyrid-2-yl)phenyl)-4-tert-butylbenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-phenylbenzenesulfonamidate FBF4CDCl3, CD3CN [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-fluorobenzenesulfonamidate FBF4CDCl3, CD3CN [154]
HH N-(2-(pyrid-2-yl)phenyl)-4-chlorobenzenesulfonamidate FBF4CDCl3, CD3CN [154]
HHN-(2-(pyrid-2-yl)phenyl)-4-cyanobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CD3CN [154]
HHN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateacetonitrileFBF4CD3CN [155]
HHN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CD3CN [154]
HHN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidate-κ2-Npy,NamidateFF DMSO-d6 [154,155]JOHGOD (h) [154,155]trans(Npy,Nbqn), trans(F,Cbqn)
HHN-(2-(pyrid-2-yl)phenyl)-4-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(4-methylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(4-trifluoromethylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(4-bromopyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(4-methoxypyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HHN-(2-(4-methoxycarbonylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
HH(pyrazolate-1-yl)3B(pyrazolate-1-yl)-κ3-Npz1,Npz2,Npz3FCF3SO3CD3CN, DMSO-d6 [156,157]CAMSIU [156]trans(Npz1,Nbqn), trans(Npz2,Cbqn)MAT [156]
HH(pyrazolate-1-yl)3B(pyrazolate-1-yl)-κ3-Npz1,Npz2,Npz3pyridine-N2CF3SO3CDCl3, CD3CN [157]OPETOU (i) [157]trans(Npz1,Nbqn), trans(Npz2,Cbqn)
HH(pyrazolate-1-yl)3B(pyrazolate-1-yl)-κ3-Npz1,Npz2,Npz34-methylpyridine-N2CF3SO3CD3CN [156,157]CAMSEQ (i) [156]trans(Npz1,Nbqn), trans(Npz2,Cbqn)
HH(pyrazolate-1-yl)3B(pyrazolate-1-yl)4-cyanopyridine2CF3SO3CD3CN [156,157]
HH1-isopropyl-3-(2-oxy-2-methylpropyl)imidazol-2-ylidene-κ2-C2,OClCl CD3CN [165]LUXZAG (j) [165]trans(C,N), trans(Cl,C)
HH1-isopropyl-3-(2-oxy-2-methylpropyl)imidazol-2-ylidenesuccinimidateBr CD3CN [165]
H7-methylN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
H7-methylN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CDCl3, CD3CN [154]
H7-chloroN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
H7-chloroN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CDCl3, CD3CN [154]
H7-methoxyN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
H7-methoxyN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CDCl3, CD3CN [154]
H7-isopropoxyN-(7,8-benzoquinolin-10-yl)-4-methoxybenzenesulfonamidateFBF4CDCl3 [156]
H7-formylN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
H7-formylN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CDCl3, CD3CN [154]
H7-cyanoN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
H7-cyanoN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CDCl3, CD3CN [154]
H7-nitroN-(2-(pyrid-2-yl)phenyl)benzenesulfonamidateFBF4CD3CN [154]
H7-nitroN-(2-(pyrid-2-yl)phenyl)-4-tert-butylbenzenesulfonamidateFBF4CD3CN [154]
H7-nitroN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CDCl3, CD3CN [154]
H7-nitroN-(2-(pyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidatepyridineFBF4CDCl3, CD3CN [154]
H7-nitroN-(2-(4-methylpyrid-2-yl)phenyl)-2-nitrobenzenesulfonamidateFBF4CD3CN [154]
(1) Two isomers, differing in the positions of CH3COO and CD3COO ligands. (2) Two isomers, differing probably in geometry (trans(O,O) versus cis(O,O)). (a) Benzene solvate. (b) Chloroform solvate. (c) Dichloromethane solvate. (d) Monohydrate. (e) Methanol solvate. (f) Heptahydrate. (g) Decahydrate. (h) Acetonitrile solvate. (i) Diethyl ether acetonitrile solvate. (j) Acetone solvate.

3. Discussion

3.1. Discussion of Single Crystal X-ray Structures

3.1.1. Pd(II) Compounds

Mononuclear Pd(II) Compounds

Nearly all mononuclear (monomeric) Pd(II) compounds with 2-arylpyridines* have the coordination number 4 and square-planar geometry. The only exclusions are: [Pd(2ppy*)(1,4,7-trithiacyclononane-κ3-S,S,S)]+, [Pd(2-(4-formylphenyl)pyridine*)(1,4,7-trithiacyclononane-κ3-S,S,S)]+, and [Pd(7,8-benzoquinoline*)(1,4,7-trithiacyclononane-κ3-S,S,S)]+ cations in their hexafluorophosphate salts (VIYXOR, WOMREY, and VIYXUX) [16,17], as well as [Pd(2ppy*)(2,9-dimethyl-1,10-phenanthroline-κ2-N,N’)(H2O)]+ cation in its hexafluorophosphate salt (EKEDOQ), and the neutral molecules of [Pd(2ppy*)(2,9-dimethyl-1,10-phenanthroline-κ2-N,N’)Cl] (EKEDEG) and [Pd(2ppy*)(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)Cl] (no X-ray structure) [53]; all of them exhibit the coordination number 5. Thus, in cases of L1 ≠ L2 or unsymmetrical LL ligands, two geometric isomers are possible which differ in the position of both their donor atoms versus the nitrogen of the pyridine (or pyridine-like) ring and the metallated carbon of the phenyl (or, more generally, aryl) ring (trans/cis isomerism).
In Table 1, Table 3, Table 5, and Table 7, it is indicated, for monomeric Pd(II)-(2-arylpyridine*) compounds with known X-ray structures, which donor atom (or the whole donor moiety) of the auxiliary ligand(s) is trans to the nitrogen of the pyridine (or pyridine-like) ring (column Geometry); this notation unambiguously determines the type of a geometric isomer for square-planar complexes/organometallics.
The comparison of these X-ray structures exhibits that the studied Pd(II)-(2-arylpyridine*) compounds which possess various elements as donor atoms of the auxiliary ligand(s) usually adopt the following geometries:
trans(N,N)—instead of trans(F,N): FULWUF and FULXAM [40]; instead of trans(O,N): POKSEO, POKSIS, POKSIS 01 and POKSOY [13,30], AFABOA, AFABIU and AFABEQ [24], TUMLAO [29], YABMEV, ASEGUB and ASEHEM [30,31], NUPROH, NUPRUN and NUPDOT [32], WOSYEI [33], UXILET [34], WOVHEX [49], PERWIU [55], and XOFKEL and XOFKIP [62]; instead of trans(Cl,N): DUBLAP [6], AMUNED, AMUNAZ, AMUNON and AMUNIH [41], XAKKOM [58], IGERES [61], KOXWAX [140], ZABFEN [141], and FIBRIV, NIJXIR and NIJXEN [152].
trans(C,N)—instead of trans(O,N): CALWIZ [162]; instead of trans(Cl,N): IGERIW [61], MIXNAL and MIXMUE [83], KACMUZ and KACNAG [87], GADLEE [89], SOFBEW, SOFBOG and SOFBIA [125], LUXYUZ [165], and ZIGPEN [166]; instead of trans(N,N): ZUNYIS [48], LOQTIW [80], MUBYAL, MUBRAE and MUBQOR [82], and TAXHAE [153]; instead of trans(Br,N): MUBQUX [82], MIXMOY [83], IGUVOW [84], POHHOL [86], and QEZFEJ, QEZFIN and QEZFOT [92]; instead of trans(I,N): MIXMIS [83] and HEXTIR [164]; instead of trans(P,N): VUYKAE [158].
trans(P,N)—instead of trans(F,N): FULXEQ [40]; instead of trans(O,N): PORNEQ and PORNIU [67], EQIRIF, EQIROL and EQIRUR [73], and FESCEO [74]; instead of trans(Cl,N): PORNUG [67], EQIREB [73], and MAWSOW [121]; instead of trans(N,N): GAJMUA and GAJNAH [64], FELQET [69], UMAPAB [70], CUBVEA [72], EQISEC [73], JAJBOM [75], IJEYAZ and IJEYED [81], and VAHTAD and VAHSUW [163]; instead of trans(S,N): SEMDEU [68].
Hence, generally, the less electronegative (less electron-acceptor) element is preferred to be positioned trans to the pyridine (or pyridine-like) nitrogen. The exceptions are the X-ray structures VUYKAE, i.e., trans(C,N)-[Pd(7,8-benzoquinoline*)(tricyclohexylphosphine-P)(4-methoxyphenylethynyl-C)] [158] (and not the trans(P,N) isomer—although carbon is more electronegative than phosphorus) and KENTEE, i.e., trans(N,N)-[Pd(2-(4-methylphenyl)pyridine*)(1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene-C2)(N3)] [122] (and not the trans(C,N) isomer—although nitrogen is more electronegative than carbon).
The most important structural parameters for the monomeric Pd(II)-(2-arylpyridine*) compounds are the Pd-N and Pd-C bond lengths, as well as the N-Pd-C bond angles. They were usually given in original papers but can also be deduced from the respective CIF files, which have been used as a primary source for this review. All of these values, associated to the CCDC reference codes given in Table 1, Table 3, Table 5, and Table 7, together with indication which elements (donor atoms) of the auxiliary ligands are in trans position in respect to the metal-bonded N and C atoms, are listed in Table 11.
In the majority of monomeric Pd(II)-(2-arylpyridine*) compounds, the Pd-N bonds are longer than those of Pd-C, which is well-reflected by comparison of their mean bond lengths, averaged for the above 114 X-ray structures (corresponding to 113 compounds), after preliminary averaging of these parameters for a given Pd(II) species (when two or more slightly differing, crystallographically inequivalent molecules are present in the crystal lattice): 2.060 Å versus 1.997 Å. Similarly, the range of Pd-N bond lengths (1.999–2.146 Å) also corresponds to higher values than that for Pd-C (1.951–2.067 Å), despite their partial overlapping.
The N-Pd-C bond angles vary within the 79.7–90.1° range, with a mean value of 81.8°.

Dinuclear Pd(II) Compounds

Independently on the accurate molecular formulae of the dinuclear Pd(II)-(2-arylpyridine*) compounds ([Pd(2-arylpyridine*)(µ-X)]2, [Pd(2-arylpyridine*)(µ-XX)0.5]2 or [Pd(2-arylpyridine*)Y(µ-X)0.5]2 dimers), they may have various geometries, depending mainly on the type of bridge between both of the palladium atoms.
In some Pd(II) dimers, both 2-arylpyridine* ligands are nearly in the same plane, the well-known examples being the chloride- and hydroxide-bridged species [Pd(2ppy*)(μ-Cl)]2 (X-ray structures SOHDUO, SOHDUO 01, SOHDUO 02, SOHDUO 03 [19,95,96,97]) and [Pd(2ppy*)(μ-OH)]2 (X-ray structures KEXXIV, KEXXIV 01 [98,99]). In many others, both 2-arylpyridine* ligands lie in two distinct planes which are, however, nearly parallel, as exemplified by the acetate-bridged species [Pd(2ppy*)(µ-acetate-O,O)]2 (X-ray structures XEMQIQ, XEMQIQ 01, XEMQIQ 02, XEMQIQ 03, XEMQIQ 04, XEMQIQ 305 [19,67,107,108,109,110]) and [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]2 (X-ray structure YULCUE [45,102,103,148,169]). In the latter case, both bridging X ligands are cis-orientated to each other, so the two 2-arylpyridine* ligands lie on the same side of the Pd-Pd axis.
Examples of both types of Pd(II) dimers are shown in Figure 2 and Figure 3.
Nevertheless, within each above geometric type, the Pd(II)-(2-arylpyridine*) dimers may have a cisoid (like [Pd(2ppy*)(μ-Cl)]2) or a transoid (like [Pd(2ppy*)(µ-OH)]2, [Pd(2ppy*)(µ-acetate-O,O)]2 and [Pd(7,8-benzoquinoline*)(µ-acetate-O,O)]2) orientation of both nitrogen atoms (see Scheme 5). Generally, the transoid orientation seems to be more abundant than the cisoid one (in fact, the latter was found only for one X-ray-studied compound, i.e., [Pd(2ppy*)(μ-Cl)]2).
The attribution of the known X-ray structures for each geometric type and the cisoid or transoid orientation are indicated by the relevant footnotes in Table 2, Table 4, Table 6, and Table 8.
The other Pd(II)-(2-arylpyridine*) dimeric compounds usually belong to one of the two above geometric types, although a few molecules cannot be attributed to any of them due to the oblique orientation of their 2-arylpyridine* ring systems.
Besides this, in nearly all dimers, the Pd(II) atoms have the coordination number 4 and square-planar geometry; the only two exceptions are [Pd(2ppy*)(2,9-dimethyl-1,10-phenanthroline-κ2-N,N)(µ-Cl)0.5]2+ and [Pd(2ppy*)(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)(µ-Cl)0.5]2+ cations in their hexafluorophosphate salts (the former: EKEDUW, the latter: no X-ray structure), revealing the coordination number 5 [53]. Similarly to the monomeric Pd(II) compounds, there is a clear preference for trans(N,N) configuration (DAQMUF [39], ANOJIX [45], XOTVIL [66], UMAPEF [70], and JUCFEU [113]), trans(P,N) (BUFYOS [116], SIDBUE [117], and EBOHEL [149]), or trans(C,N) (MIXMEO [83]) instead of trans(O,N), as well as for the trans(S,N) one (GAJNOV [64]) instead of trans(N,N); thus, again, the less electronegative (less electron-acceptor) element is preferred to be positioned trans to the pyridine (or pyridine-like) nitrogen. The only exception is the X-ray structure IGOWIL, i.e., trans(N,N)-[Pd(2ppy*)(N3)(µ-1,2-bis(diethylphosphino)ethane-P,P)0.5]2 [118], which is not the trans(P,N) isomer (although nitrogen is more electronegative than phosphorus).
The most important structural parameters for the dimeric Pd(II)-(2-arylpyridine*) molecules are, again, the Pd-N and Pd-C bond lengths, as well as the N-Pd-C bond angles, which are listed in Table 12.
In the majority of dinuclear Pd(II)-(2-arylpyridine*) molecules, the Pd-N bonds are, again, longer than those of Pd-C, as exhibited by the comparison of their mean bond lengths, averaged for the above 39 dimers: 2.033 Å versus 1.990 Å. In this case, the preliminary averaging of bond lengths (and also angles) was done in two stages: first, for both 2-arylpyridine* ligands inside the dimeric moiety (and, optionally, for slightly differing, crystallographically inequivalent complex molecules—if present) of a given X-ray structure, then for various X-ray structures corresponding to the same compound (e.g., SOHDUO, SOHDUO 01, SOHDUO 02, SOHDUO 03 for [Pd(2ppy*)(μ-Cl)]2, etc.). On the other hand, however, the range of Pd-N bond lengths (1.900–2.129 Å) is similar to that for Pd-C (1.892–2.140 Å).
The N-Pd-C bond angles vary within the 77.0–91.0° range, with a mean value of 82.4°.

Oligonuclear Pd(II) Compounds

For oligonuclear Pd(II)-(2-arylpyridine*) compounds, there are several X-ray structures (ZUMSUY and ZUMSOS [114], MIRGUR, MIRGOL and MIRGEB [119], YULDEP [102,103], and VAHTUX, VAHVAF and VAHVEJ [163]). As they concern species with various numbers of palladium atoms (3, 4, 9, 10, or 12) and highly different auxiliary ligands, it is difficult to describe them as one group of species.

3.1.2. Pd(III) Compounds

In the dinuclear Pd(III)-(2-arylpyridine*) compounds (mainly [Pd(2-arylpyridine*)Y(µ-X)]2 dimers), the X bridges are most often carboxylates, while Y monodentate ligands are various monoanions (usually halides or carboxylates); thus, they are neutral molecules. Their X-ray structures, however, are known only for acetate-bridged species (CUHQAY [44,45], YULDAL and YULDIT [102,103], PAHREX [167], and PIVGEI [168]), as already shown in Table 9.
In all of these X-ray-studied dimers, the Pd(III) coordination number is 6, with direct Pd-Pd linking and octahedral geometry around each palladium atom. Both Pd(III) ions and both auxiliary ligands Y (fluorides, chlorides, or acetates) are approximately co-linear, forming the axial axis of the whole dimeric molecule; from the viewpoint of each palladium atom, the equatorial positions are occupied by the N- and C-donor atoms of the respective 2-arylpyridine* ring system and the oxygen atoms of the bridging acetates, resulting in the untypical (owing to the participation of another palladium atom) chromophores PdCNO2F, PdCNO2Cl, or PdCNO3 (for Y = F, Cl or O, respectively).
In consequence, both 2-arylpyridine* ligands lie in two distinct but nearly parallel planes. Due to the fact that the bridging acetates are cis-orientated to each other, the two 2-arylpyridine* ligands lie on the same side of the Pd-Pd axis. However, in respect to the position of nitrogen atoms, they always exhibit transoid orientation [44,45,102,103,167,168].
An example of such a Pd(III) dimer is shown in Figure 4.
The most important structural parameters for the dimeric Pd(III)-(2-arylpyridine*) molecules are, again, the Pd-N and Pd-C bond lengths, as well as the N-Pd-C bond angles, which are listed in Table 13.
Again, in these Pd(III)-(2-arylpyridine*) dimers, the Pd-N bonds are longer than those of Pd-C, as proven by comparison of their mean values (averaged for all five compounds in a way analogous to the Pd(II) dimers): 2.013 Å versus 1.992 Å, and their respective ranges: 2.002–2.027 Å versus 1.978–2.006 Å.
The N-Pd-C bond angles vary within the 81.6–82.9° range, with a mean value of 82.5°.
For polynuclear Pd(III)- and Pd(2.5)-(2-arylpyridine*) compounds, there are several X-ray structures (PAHRIB, PIVFUX, PAHSOI, PAHSOI 01, PAHSOI 02, PAHSOI 03, PAHSOI 04, PAHSOI 05, and PIVGAE) [167,168]. Generally, these are [Pd(2-arylpyridine*)(µ-acetate-O,O)]n chains (with +n or +n/2 electric charge), in which the Pd(III) or Pd(+2.5) atoms form an infinite (-Pd-Pd-)n wire.

3.1.3. Pd(IV) Compounds

All mononuclear (monomeric) Pd(IV) compounds with 2-arylpyridines* have the coordination number 6 and octahedral geometry, which allows for many possible geometric isomers.
In the case of the [Pd(2-arylpyridine*)2L1L2] type, the X-ray structures are known only for compounds containing 2ppy* (QAVCAS [37], LUFQIN and LUFQOT [38], ZUNYOY [48], and PITZOI [170]), as already shown in Table 10 (top). They exhibit a preference to form trans(X,N2ppyA),trans(C2ppyA,N2ppyB) isomers, where X = O, Cl is the donor atom in one of the L1, L2 auxiliary ligands. Such an arrangement of donor atoms corresponds to the cis orientation of L1 and L2; no trans(L1,L2) isomers were described. On the other hand, as already mentioned, no X-ray structures (and, generally, compounds) of the [Pd(2-arylpyridine*)2(LL)] type were reported.
In the case of the [Pd(2-arylpyridine*)ABCD] type, the X-ray structures are known for compounds containing various 2-arylpyridines*, although surprisingly not for 2ppy* (APACIE, APACUQ, APADAX and APADEB [123], WEFFEU [148], JOHGOD [154,155], CAMSEQ and CAMSIU [156], OPETOU [157], LUXZAG [165], and OPOQAM [171]). Due to the large variety of auxiliary ligands, there are many isomeric possibilities; nevertheless, when donor atoms at the A, B, C, and D sites are different and the steric reasons allow for the formation of distinct stereomers, the trans(N,N) geometry is preferred instead of trans(F,N) (JOHGOD [154,155]) and the trans(C,N) geometry is preferred instead of trans(Cl,N) or trans(O,N) (LUXZAG [165])—following an analogous tendency for Pd(II) compounds.
The most important structural parameters for the monomeric Pd(IV)-(2-arylpyridine*) compounds are, again, the Pd-N and Pd-C bond lengths, as well as the N-Pd-C bond angles, which are listed in Table 14.
Similarly to the Pd(II) monomers, in both types of the Pd(IV)-(2-arylpyridine*) species (treated together), the Pd-N bonds are, again, longer than those of Pd-C, as proven by the comparison of their mean values, averaged for the above 16 X-ray structures (corresponding to 16 compounds): 2.050 Å versus 2.022 Å. In this case, the averaging of the structural parameters took into account not only the possible presence of two slightly differing, crystallographically inequivalent molecules in the crystal lattice but also the fact that, in [Pd(2-arylpyridine*)2L1L2] molecules, there are two (and not one, like there usually is in the Pd(II) compounds) 2-arylpyridine* ligands. Furthermore, the range of Pd-N bond lengths (2.012–2.154 Å) also corresponds to higher values than that for Pd-C (1.985–2.068 Å), despite their partial overlapping.
The N-Pd-C bond angles vary within the 80.5–87.4° range, with a mean value of 83.0°.

3.2. Discussion of 15N NMR Spectra

Besides routine 1H and/or 13C (and, optionally, 19F or 31P) NMR spectra, some Pd(II)-(2-arylpyridine*) compounds (in fact, only the Pd(II)-2ppy* ones) were studied by 15N NMR [1,6]. Their 15N chemical shifts (in respect to neat nitrometane), together with the 15N coordination shifts (i.e., differences from the 15N chemical shift for free 2ppy measured in the same or at least in a similar solvent) are listed in Table 15.
The 15N NMR chemical shifts for the above compounds are within a relatively narrow range, from ca. −147 to ca. −141 ppm. In all cases, the Pd(II) coordination of 2ppy* leads to a large decrease in this parameter (comparing to 2ppy), reflecting a strong 15N shielding phenomenon and resulting in a significant low-frequency (i.e., upfield) shift of the 15N signal (thus, the Δ15Ncoord values are negative). The absolute magnitude of this effect is ca. 68–74 ppm [1,6].
In two reviews by Pazderski [173,174], covering Pd(II) complexes or organometallics with various aza aromatic ligands (like azines, e.g., pyridine derivatives, etc.), this phenomenon was identified as typical and dependent on the type of donor atom in the trans position in respect to the Pd(II)-bonded nitrogen. However, for the presently reviewed Pd-2ppy* compounds, the absolute magnitudes of the 15N NMR coordination shifts are relatively similar, although the geometries are variable: trans(Cl,N) in [Pd(2ppy*)Cl2] and [Pd(2ppy*)(µ-Cl)]2 [1]; trans(S,N) in [Pd(2ppy*)(dimethyl sulfoxide)2]+ [1]; trans(N,N) in [Pd(2ppy*)LCl], where L = NH3, pyridine, 2-, 3-, and 4-methylpyridine, 2,3-, 2,4-, 2,6-, and 3,5-dimethylpyridine, and 2,4,6-trimethylpyridine (the latter proven by the X-ray structure DUBLAP) [6].

4. Applications

4.1. Biological Activity

A total of 34 of the reviewed compounds (Pd(II) only) were studied in respect to their biological activity [5,18,51,94,110,113,152]. Generally, all these reports concerned anti-tumour properties, but one also described anti-bacterial action [152]. The respective data are summarized in Table 16.

4.2. Catalytic Activity

A total of 94 of the reviewed compounds (Pd(II)—91, Pd(III)—2, Pd(IV)—1) were exhibited to have catalytic activity [15,39,44,45,62,67,68,69,74,81,82,83,84,85,86,87,88,89,93,102,124,125,160,165,166]. Their application as catalysts is summarized in Table 17.

4.3. Luminescence

A total of 63 of the reviewed compounds (Pd(II) only) were studied in detail in respect to their luminescence [8,9,12,19,23,30,31,39,51,52,54,57,59,125,128,133]. An important parameter for luminescence differentiation is the lifetime, i.e., the average time that a molecule remains in an excited state prior to returning to the ground state by emitting a photon. In this review, we have arbitrarily chosen the lifetime of 10 µs as a border between long- and short-living excited forms; the former correspond to phosphorescence, while the latter—to either phosphorescence or fluorescence (it is often difficult to distinguish both phenomena: although they have different mechanisms, their identification may be ambiguous, even taking into account the fact that phosphorescence lifetimes are principally longer than the fluorescence ones).
A total of 25 of the reviewed compounds exhibited luminescence with lifetimes above 10 µs (LUM1) [8,9,19,39,51,52,57,128,133], while 29 had lifetimes below 10 µs (LUM2) [12,23,30,31,39,51,59]; unfortunately, for 11 species, this principal parameter was not determined (LUMx) [52,54,125]. The detailed data describing their chemical character, together with the maximal quantum yields (for a given group of compounds, rounded to 1%), are summarized, in the order of their references, in Table 18.

4.4. Advanced Materials

The Pd(III) and Pd(2.5) polynuclear species of the general formula [Pd(ArPY#*)(µ-X)]nYa (ArPY# = 7,8-benzoquinoline, 7-chloro-7,8-benzoquinoline; X = acetate, n-hexanoate; Y = F, PF6, BF4; a = n, n/2), forming infinite one-dimensional chains, exhibit optical and electronic anisotropy, as well as semi-conductivity (Pd(III) species) or metallic conductivity (Pd(2.5)). This is why they can be used in photovoltaic cells and molecular sensors [167,168]. The monomeric compounds and their electropolymerized thin films [PdII(2ppy*)(LL)] (LL = 2-((4-diphenylaminophenyl)iminomethyl)-, 2-((4-(4-diphenylaminophenyl)phenyl)iminomethyl)-, and 2-((4-(2-(4-diphenylaminophenyl)vinyl)phenyl)iminomethyl)-4-methoxyphenolate) are also highly photoconductive [32].
Another application was described for [Pd(7,8-benzoquinoline*)((pyrazolate-1-yl)3B(pyrazolate-1-yl))F]CF3SO3; it is relatively easy to synthesize the corresponding [Pd(7,8-benzoquinoline*)((pyrazolate-1-yl)3B(pyrazolate-1-yl))18F]+ cation, it being a strong electrophilic fluorinating agent (while conventional 18F-fluoride chemistry is dominated by nucleophilic fluorination reactions), which allows for the introduction of 18F isotope into many biologically active organic molecules (e.g., estrone, converted to 3-deoxy-3-fluoroestrone, etc.) [156]. Such 18F-labeled aromatic compounds, obtained at the late stage of the synthetic route, can be applied as positron emission tomography (PET) tracers, being useful from the viewpoint of clinical PET imaging.

5. Conclusions

Large numbers of reports (>170), described compounds (>670), and single crystal X-ray structures (>200) indicate that the Pd(II), Pd(III), and Pd(IV) compounds with 2-arylpyridines* are interesting from the chemical, spectroscopic, and structural viewpoint. These species exhibit a specific (N,C) coordination mode that is alternative to classical, monodentate complexation by nitrogen; due to the fact that all contain both palladium-nitrogen and palladium-carbon bonds, they can be regarded as either complexes or organometallics.
The majority of Pd(II)-(2-arylpyridine*) compounds are mononuclear (monomeric) or dinuclear (mainly dimeric), exhibiting the coordination number 4 and square-planar geometry around the palladium atom(s). In the case of monomeric compounds, having the general formula [Pd(2-arylpyridine*)L1L2] or [Pd(2-arylpyridine*)(LL)], upon the presence of different monodentate (L1 ≠ L2) or unsymmetrical bidentate (LL) auxiliary ligands, the appearance of geometric isomers differing in the position of various donor atoms versus the nitrogen of the pyridine (or pyridine-like) ring or the metallated carbon of the phenyl (or aryl) ring, is possible. Analogous stereomers can appear for the [Pd(2-arylpyridine*)(µ-X)]2 or [Pd(2-arylpyridine*)(µ-XX)0.5]2 dimers (if the respective X or XX bridges are unsymmetric), as well as for those of [Pd(2-arylpyridine*)Y(µ-X)0.5]2; this isomerism is enhanced when the donor atoms of the bridging X or XX ligands are different. In all cases, however, there is an evident preference (with a few exceptions) to form such stereomers, in which the auxiliary ligands that have less electron-acceptor properties (thus, usually containing less electronegative elements as donor atoms) are trans-positioned to the pyridine (or pyridine-like) nitrogen. Besides this, in all dimeric molecules, the transoid or cisoid orientation of both 2-arylpyridine* ring systems may occur, with the predominance of the former one.
The Pd(III)-(2-arylpyridine*) compounds are mainly dimeric, having the general formula ([Pd(2-arylpyridine*)Y(µ-X)]2; the coordination number of both palladium atoms is 6 (including the presence of Pd-Pd direct bonding), while their geometry is octahedral. There are also some Pd(III) and Pd(2.5) polymeric species, and these form infinite one-dimensional wires. The Pd(IV)-(2-arylpyridine*) species are only monomeric, exhibiting the coordination number 6 and octahedral geometry.
A total of 13 Pd(II)-2ppy* compounds were studied by 15N NMR. Comparing them to free 2ppy*, the formation of palladium-nitrogen bonding results in a ca. 68–74 ppm decrease in the chemical shift of the pyridine nitrogen. This phenomenon reflects a strong 15N shielding effect at the Pd(II)-bonded N atom.
About 200 Pd-(2-arylpyridine*) compounds (predominantly the Pd(II) ones) exhibit some specific activities, especially biological and/or catalytic activities, and luminescence properties. These open the way for their application as anti-tumour or anti-bacterial drugs and catalysts in organic syntheses, and as materials for the production of organic light-emitting diodes. A few others can be applied as advanced materials in the production of photovoltaic cells and molecular sensors, and as electrophilic fluorinated agents that are suitable for preparation of the 18F-labeled compounds, used in positron emission tomography. The aim of this review was not only the collection in one place of spectroscopic and diffractometric data of the discussed palladium compounds, but also the presentation of their increasing applications in various branches of medicine and industry.

Author Contributions

Conceptualization, L.P.; methodology, L.P.; software, L.P.; validation, L.P. and P.A.A.; formal analysis, L.P. and P.A.A.; investigation, L.P. and P.A.A.; resources, L.P. and P.A.A.; data curation, L.P. and P.A.A.; writing—original draft preparation, L.P.; writing—review and editing, L.P. and P.A.A.; visualization, L.P.; supervision, L.P.; project administration, L.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data are available in the quoted papers.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pawlak, T.; Niedzielska, D.; Vicha, J.; Marek, R.; Pazderski, L. Dimeric Pd(II) and Pt(II) chloride organometallics with 2-phenylpyridine and their solvolysis in dimethylsulfoxide. J. Organomet. Chem. 2014, 759, 58–66. [Google Scholar] [CrossRef]
  2. Deka, R.; Sarkar, A.; Butcher, R.J.; Junk, P.C.; Turner, D.R.; Deacon, G.B.; Singh, H.B. Isolation of Homoleptic Dicationic Tellurium and Monocationic Bismuth Analogues of Non-N-Heterocyclic Carbene Derivatives. Organometallics 2020, 39, 334–343. [Google Scholar] [CrossRef]
  3. Craig, C.A.; Watts, R.J. Photophysical Investigation of Palladium(II) Ortho-Metalated Complexes. Inorg. Chem. 1989, 28, 309–313. [Google Scholar] [CrossRef]
  4. Perez, J.; Sanchez, G.; Garcia, J.; Serrano, J.L.; Lopez, G. Thermal study of [Pd(2-Phpy)Cl(L)] complexes (L=pyridines and amines). J. Therm. Anal. Calorim. 2001, 66, 361–370. [Google Scholar] [CrossRef]
  5. Edwards, G.L.; Black, D.S.C.; Deacon, G.B.; Wakelin, L.P.G. In vitro and in vivo studies of neutral cyclometallated complexes against murine leukæmias. Can. J. Chem. 2005, 83, 980–989. [Google Scholar] [CrossRef]
  6. Niedzielska, D.; Pawlak, T.; Wojtczak, A.; Pazderski, L. Structural and 1H, 13C, 15N NMR spectroscopic studies of Pd(II) chloride organometallics with 2-phenylpyridine and ammonia, pyridine or its methyl derivatives. Polyhedron 2015, 92, 41–51. [Google Scholar] [CrossRef]
  7. Belviso, B.D.; Marin, F.; Fuertes, S.; Sicilia, V.; Rizzi, R.; Ciriaco, F.; Cappuccino, C.; Dooryhee, E.; Falcicchio, A.; Maini, L.; et al. Structural Insights into the Vapochromic Behavior of Pt- and Pd- Based Compounds. Inorg. Chem. 2021, 60, 6349–6366. [Google Scholar] [CrossRef] [PubMed]
  8. Balashev, K.P.; Ivanov, Y.A.; Taraskina, T.V.; Cherezova, E.A. Synthesis and Properties of Pd(II) and Pt(II) Cyanide Complexes with Cyclometalating Ligands Derived from 2-Phenylpyridine and 2-(2-Thienyl)pyridine. Russ. J. Gen. Chem. 2002, 72, 812–813. [Google Scholar] [CrossRef]
  9. Sicilia, V.; Fornies, J.; Fuertes, S.; Martín, A. New Dicyano Cyclometalated Compounds Containing Pd(II)−Tl(I) Bonds as Building Blocks in 2D Extended Structures: Synthesis, Structure, and Luminescence Studies. Inorg. Chem. 2012, 51, 10581–10589. [Google Scholar] [CrossRef]
  10. O’Mahoney, C.A.; Parkin, I.P.; Williams, D.J.; Woollins, J.D. New Metal-Sulphur-Nitrogen Compounds from Reactions in Liquid Ammonia. The X-Ray Structures of trans-Bis(acetophenone dimethylhydrazone-Nα)-dichloropalladium(II) and [Di(azathien)-1-yl-S1N4] 2-(hydrazonoethyl)phenyl]paIladium (II). J. Chem. Soc. Dalton Trans. 1989, 1179–1185. [Google Scholar] [CrossRef]
  11. Steel, P.J.; Caygill, G.B. Cyclometallated compounds II. Proton and carbon-13 nuclear magnetic resonance spectral assignments of cyclopalladated compounds. J. Organomet. Chem. 1987, 327, 101–114. [Google Scholar] [CrossRef]
  12. Aiello, I.; Ghedini, M.; La Deda, M. Synthesis and spectroscopic characterization of organometallic chromophores for photoluminescent materials: Cyclopalladated complexes. J. Luminesc. 2002, 96, 249–259. [Google Scholar] [CrossRef]
  13. Serrano, J.L.; Garcia, L.; Perez, J.; Perez, E.; Garcia, J.; Sanchez, G.; Lopez, G.; Liu, M. Reactivity Towards Acidic Protic Ligands of Cyclopalladated Di-μ-hydroxo Complexes. Eur. J. Inorg. Chem. 2008, 2008, 4797–4806. [Google Scholar] [CrossRef]
  14. Pugliese, T.; Godbert, N.; La Deda, M.; Aiello, I.; Ghedini, M. Electrochemical and solvatochromic study of cyclopalladated complexes. Chem. Phys. Lett. 2005, 410, 201–203. [Google Scholar] [CrossRef]
  15. Fath, R.H.; Hoseini, S.J. Covalently cyclopalladium(II) complex/reduced-graphene oxide as the effective catalyst for the Suzuki-Miyaura reaction at room temperature. J. Organomet. Chem. 2017, 828, 16–23. [Google Scholar] [CrossRef]
  16. Janzen, D.E.; van Derveer, D.G.; Mehne, L.F.; da Silva Filho, D.A.; Bredas, J.L.; Grant, G.J. Cyclometallated Pt(II) and Pd(II) complexes with a trithiacrown ligand. Dalton Trans. 2008, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
  17. Janzen, D.E.; Bruening, M.A.; Mamiya, A.A.; Driscoll, L.E.; da Silva Filho, D.A. Hemilabile bonding of 1-oxa-4,7-dithiacyclononane in cyclometallated palladium(II) complexes. Dalton Trans. 2019, 48, 11520–11535. [Google Scholar] [CrossRef]
  18. Edwards, G.L.; Black, D.S.C.; Deacon, G.B.; Wakelin, L.P.G. Effect of charge and surface area on the cytotoxicity of cationic metallointercalation reagents. Can. J. Chem. 2005, 83, 969–979. [Google Scholar] [CrossRef]
  19. Bercaw, J.E.; Durrell, A.C.; Gray, H.B.; Green, J.C.; Hazari, N.; Labinger, J.A.; Winkler, J.R. Electronic Structures of PdII Dimers. Inorg. Chem. 2010, 49, 1801–1810. [Google Scholar] [CrossRef]
  20. Balashev, K.P.; Khanukaeva, O.P.; Antonov, N.V.; Ivanov, Y.A.; Songstad, J. Synthesis and Spectral and Electrochemical Properties of Palladium(II) Ethylenediamine Complexes with Heterocyclic Cyclometallating Ligands. Russ. J. Gen. Chem. 1998, 68, 1668–1669. [Google Scholar]
  21. Kulikova, M.V.; Balashev, K.P.; Kvam, P.I.; Songstad, J. Effects of the nature of the ligand environment and metal center on the optical and electrochemical properties of platinum(II) and palladium(II) ethylenediamine complexes with heterocyclic cyclometalated ligands. Russ. J. Gen. Chem. 2000, 70, 163–170. [Google Scholar]
  22. Pugliese, T.; Godbert, N.; Aiello, I.; Ghedini, M.; La Deda, M. Synthesis and characterization of cyclopalladated ionic complexes. Inorg. Chem. Commun. 2006, 9, 93–95. [Google Scholar] [CrossRef]
  23. Diez, A.; Fornies, J.; Fuertes, S.; Lalinde, E.; Larraz, C.; Lopez, J.A.; Martin, A.; Moreno, M.T.; Sicilia, V. Synthesis and Luminescence of Cyclometalated Compounds with Nitrile and Isocyanide Ligands. Organometallics 2009, 28, 1705–1718. [Google Scholar] [CrossRef]
  24. Dudkina, Y.B.; Mikhaylov, D.Y.; Gryaznova, T.V.; Tufatullin, A.I.; Kataeva, O.N.; Vicic, D.A.; Budnikova, Y.H. Electrochemical Ortho Functionalization of 2-Phenylpyridine with Perfluorocarboxylic Acids Catalyzed by Palladium in Higher Oxidation States. Organometallics 2013, 32, 4785–4792. [Google Scholar] [CrossRef]
  25. Al-Jibori, S.A.; Al-Janabi, A.S.M.; Al-Sahan, S.W.M.; Wagner, C. Pd (II)-pyrrolidine dithiocarbamate complexes: Synthesis, spectroscopic studies and molecular structure of [Pd(PyDT)(ppy)]. J. Mol. Struct. 2021, 1227, 129524. [Google Scholar] [CrossRef]
  26. Kondrashov, M.; Fleckhaus, A.; Gritcenko, R.; Wendt, O.F. Crystal structure of (piperidine-1-carbodithioato-κ2S,S)[2-(pyridin-2-yl)phenyl-κ2C1,N]palladium(II). Acta Crystallogr. 2015, E71, m166. [Google Scholar] [CrossRef]
  27. Balashev, K.P.; Puzyk, M.V.; Khanukaeva, O.P.; Antonov, N.V.; Ivanov, Y.A. Palladium(II) Mixed-Ligand Maleonitriledithiolate Complexes with Cyclometallating Ligands 2-Phenylpyridinate and 2-(2′-Thienyl)pyridinate. Russ. J. Gen. Chem. 1998, 68, 1670–1671. [Google Scholar]
  28. Narayan, S.; Jain, V.K.; Butcher, R.J. Synthesis and characterization of cyclometallated palladium(II) dithiolate complexes of the type [Pd(EC)(SS)]. J. Organomet. Chem. 1997, 549, 73–80. [Google Scholar] [CrossRef]
  29. Urban, R.; Kramer, R.; Mihan, S.; Polborn, K.; Wagner, B.; Beck, W. Metal complexes of biologically important ligands, LXXXVII α-Amino carboxylate complexes of palladium(II), iridium(III) and ruthenium(II) from chloro-bridged ortho-metallated metal compounds and [(OC)3Ru(Cl)(μ-Cl)]2. J. Organomet. Chem. 1996, 517, 191–200. [Google Scholar] [CrossRef]
  30. Santana, M.D.; Garcia-Bueno, R.; Garcia, G.; Sanchez, G.; Garcia, J.; Perez, J.; García, L.; Serrano, J.L. Luminescence properties of cyclopalladated complexes with Schiff base ligands. Inorg. Chim. Acta 2011, 378, 49–55. [Google Scholar] [CrossRef]
  31. Santana, M.D.; Garcia-Bueno, R.; Garcia, G.; Sanchez, G.; García, J.; Perez, J.; García, L.; Serrano, J.L. Synthesis and luminescence properties of cyclopalladated complexes with S^N and O^N donor ligands. Dalton Trans. 2011, 40, 3537–3546. [Google Scholar] [CrossRef] [PubMed]
  32. Ionescu, A.; Lento, R.; Mastropietro, T.F.; Aiello, I.; Termine, R.; Golemme, A.; Ghedini, M.; Bellec, N.; Pini, E.; Rimoldi, I.; et al. Electropolymerized Highly Photoconductive Thin Films of Cyclopalladated and Cycloplatinated Complexes. ACS Appl. Mater. Interfaces 2015, 7, 4019–4028. [Google Scholar] [CrossRef]
  33. Aiello, I.; Crispini, A.; Ghedini, M.; La Deda, M.; Barigelletti, F. Synthesis and characterization of a homologous series of mononuclear palladium complexes containing different cyclometalated ligands. Inorg. Chim. Acta 2000, 308, 121–128. [Google Scholar] [CrossRef]
  34. Ghedini, M.; Golemme, A.; Aiello, I.; Godbert, N.; Termine, R.; Crispini, A.; La Deda, M.; Lelj, F.; Amati, M.; Belviso, S. Liaisons between photoconductivity and molecular frame in organometallic Pd(II) and Pt(II) complexes. J. Mater. Chem. 2011, 21, 13434–13444. [Google Scholar] [CrossRef]
  35. McKay, A.P.; Shillito, G.E.; Gordon, K.C.; McMorran, D.A. Cyclometallated Platinum(II) and palladium(II) complexes containing 1,5-diarylbiguanides: Synthesis, characterisation and hydrogen bonddirected assembly. CrystEngComm 2017, 19, 7095–7111. [Google Scholar] [CrossRef]
  36. Panova, A.G.; Balashev, K.P. Spectral and electrochemical properties of mono-, bi-, and tetranuclear cyclopalladized complexes based on 2-(2-thienyl)pyridine and 2-phenylpyridine with pyridine and 4,4′-bipyridyl. Russ. J. Gen. Chem. 2010, 80, 1841–1846. [Google Scholar] [CrossRef]
  37. Dick, A.R.; Kampf, J.W.; Sanford, M.S. Unusually Stable Palladium(IV) Complexes: Detailed Mechanistic Investigation of C-O Bond-Forming Reductive Elimination. J. Am. Chem. Soc. 2005, 127, 12790–12791. [Google Scholar] [CrossRef]
  38. Racowski, J.M.; Dick, A.R.; Sanford, M.S. Detailed Study of C-O and C-C Bond-Forming Reductive Elimination from Stable C2N2O2-Ligated Palladium(IV) Complexes. J. Am. Chem. Soc. 2009, 131, 10974–10983. [Google Scholar] [CrossRef]
  39. Santana, M.D.; Garcia-Bueno, R.; Garcia, G.; Sanchez, G.; Garcia, J.; Kapdi, A.R.; Naik, M.; Pednekar, S.; Perez, J.; Garcia, L.; et al. Novel saccharinate-bridged palladium complexes for efficient C–O bond activation displaying promising luminescence properties. Dalton Trans. 2012, 41, 3832–3842. [Google Scholar] [CrossRef]
  40. Ball, N.D.; Kampf, J.W.; Sanford, M.S. Synthesis and reactivity of palladium(II) fluoride complexes containing nitrogen-donor ligands. Dalton Trans. 2010, 39, 632–640. [Google Scholar] [CrossRef]
  41. Al-Jibori, S.A.; Gergees, H.M.; Al-Rubaye, M.S.; Basak-Modi, S.; Ghosh, S.; Schmidt, H.; Laguna, M.; Luquin, M.A.; Hogarth, G. Synthesis and molecular structures of palladium(II) metalated 2-phenylpyridine complexes [PdCl(pyC6H4)L] containing amino- or acetylamino-pyridine co-ligands. Inorg. Chim. Acta 2016, 450, 50–56. [Google Scholar] [CrossRef]
  42. Jolliet, P.; Gianini, M.; von Zelewsky, A.; Bernardini, G.; Stoeckli-Evans, H. Cyclometalated Complexes of Palladium(II) and Platinum(II): Cis-Configured Homoleptic and Heteroleptic Compounds with Aromatic CN Ligands. Inorg. Chem. 1996, 35, 4883–4888. [Google Scholar] [CrossRef]
  43. Berger, A.; Djukic, J.P.; Pfeffer, M. Chloride-Promoted Synthesis of Cis Bis-Chelated Palladium(II) Complexes from Ortho-Mercurated Tricarbonyl(η6-arene)chromium Complexes. Organometallics 2003, 22, 5243–5260. [Google Scholar] [CrossRef]
  44. Powers, D.C.; Geibel, M.A.L.; Klein, J.E.M.N.; Ritter, T. Bimetallic Palladium Catalysis: Direct Observation of Pd(III)-Pd(III) Intermediates. J. Am. Chem. Soc. 2009, 131, 17050–17051. [Google Scholar] [CrossRef] [PubMed]
  45. Powers, D.C.; Xiao, D.Y.; Geibel, M.A.L.; Ritter, T. On the Mechanism of Palladium-Catalyzed Aromatic C-H Oxidation. J. Am. Chem. Soc. 2010, 132, 14530–14536. [Google Scholar] [CrossRef]
  46. Zhao, X.; Dong, V.M. Carbon–Sulfur Reductive Elimination from Palladium(IV) Sulfinate Complexes. Angew. Chem. Int. Ed. 2011, 50, 932–934. [Google Scholar] [CrossRef]
  47. Xu, C.; Shen, Q. Palladium-Catalyzed Trifluoromethylthiolation of Aryl C−H Bonds. Org. Lett. 2014, 16, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
  48. Nguyen, B.N.; Adrio, L.A.; Albrecht, T.; White, A.J.P.; Newton, M.A.; Nachtegaal, M.; Figueroa, S.J.A.; Hii, K.K.M. Electronic structures of cyclometalated palladium complexes in the higher oxidation states. Dalton Trans. 2015, 44, 16586–16591. [Google Scholar] [CrossRef]
  49. Ha, K. Crystal structure of (pyridine-2-carboxylato- κ2N,O)-[2-(2-pyridyl)phenyl-κ2N,C1]palladium(II), C17H12N2O2Pd. Z. Kristallogr. New Cryst. Struct. 2019, 234, 1299–1300. [Google Scholar] [CrossRef]
  50. Oloo, W.N.; Zavalij, P.Y.; Vedernikov, A.N. Palladium(IV) Monohydrocarbyls: Mechanistic Study of the Ligand- Enabled Oxidation of Palladium(II) Complexes with H2O2 in Water. Organometallics 2013, 32, 5601–5614. [Google Scholar] [CrossRef]
  51. Yang, J.; Wang, P.; Wang, W.; Yang, R.; Liao, X.; Luo, H.; Yang, B.; Anion-selective, C.G. “Turn-on” two color phosphorescent probes based on “Pd-Pd” interaction of a series of cyclometallated Palladium (II) complexes induced by a self-assembly in aqueous solution. J. Inorg. Biochem. 2023, 239, 112083. [Google Scholar] [CrossRef]
  52. Balashev, K.P.; Cerezova, E.A.; Ivanov, M.A.; Tkacheva, T.A. Spectroscopic and Electrochemical Properties of Mixed-Ligand Cyclopalladinized Complexes of Deprotonated Forms of 2-(2-Thienyl)Pyridine and 2-Phenylpyridine with 1,10-Phenantroline and Its 1,4-Diazine Derivatives. Russ. J. Gen. Chem. 2006, 76, 1150–1156. [Google Scholar] [CrossRef]
  53. Garypidou, A.; Ypsilantis, K.; Tsolis, T.; Kourtellaris, A.; Plakatouras, J.C.; Garoufis, A. Synthesis and characterization of mixed ligand cyclopalladates with 2-phenylpyridine and substituted phenanthrolines: Investigation into the hydroxylation reaction of 2-phenylpyridine. Inorg. Chim. Acta 2021, 518, 120254. [Google Scholar] [CrossRef]
  54. Ghedini, M.; Aiello, I.; La Deda, M.; Grisolia, A. Mixed 2-phenylpyridine and 5-substitued-8-hydroxyquinolines palladium(II) complexes: New emitters in solutions at room temperature. Chem. Commun. 2003, 2198–2199. [Google Scholar] [CrossRef] [PubMed]
  55. Mastropietro, T.F.; Szerb, E.I.; La Deda, M.; Crispini, A.; Ghedini, M.; Aiello, I. Cyclopalladated 3,5-Disubstituted 2-(2′-Pyridyl)pyrroles Complexed to 8-Hydroxyquinoline or 4-Hydroxyacridine. Eur. J. Inorg. Chem. 2013, 2013, 2188–2194. [Google Scholar] [CrossRef]
  56. Kulikova, M.V.; Kvam, P.J.; Songstad, J.; Balashev, K.P. Mixed-Ligand Cyclometallated Palladium(II) and Platinum(II) Complexes with 2,3-Bis(2-pyridyl)pyrazine Based on 2-(2-Thienyl)pyridine and 2-Phenylpyridine. Russ. J. Gen. Chem. 1997, 67, 967–968. [Google Scholar]
  57. Finagenova, G.O.; Nikiforova, A.A.; Puzyk, M.V.; Balashev, K.P. Mixed-Ligand Pt(II) and Pd(II) Complexes on the Basis of Cyclometalated 2-Phenylpyridine and Polypyridyl Ligands. Russ. J. Gen. Chem. 2008, 78, 1780–1786. [Google Scholar] [CrossRef]
  58. Kondrashov, M.; Gritcenko, R.; Fleckhaus, A.; Wendt, O.F. Cyclometallated phenyl-pyridine palladium species. Monomeric complex formation with potentially bridging ligands. Inorg. Chim. Acta 2016, 443, 136–140. [Google Scholar] [CrossRef]
  59. Bronner, C.; Baudron, S.A.; Hosseini, M.W.; Strassert, C.A.; Guenet, A.; De Cola, L. Dipyrrin based luminescent cyclometallated palladium and platinum complexes. Dalton Trans. 2010, 39, 180–184. [Google Scholar] [CrossRef]
  60. Christman, W.E.; Morrow, T.J.; Arulsamy, N.; Hulley, E.B. Absolute Estimates of PdII(η2-Arene) C−H Acidity. Organometallics 2018, 37, 2706–2715. [Google Scholar] [CrossRef]
  61. Gunay, M.E.; Ozdemir, N.; Ulusoy, M.; Ucak, M.; Dincer, M.; Cetinkaya, B. The influence of moisture on deprotonation mode of imidazolinium chlorides with palladacycle acetate dimer. J. Organomet. Chem. 2009, 694, 2179–2184. [Google Scholar] [CrossRef]
  62. Firinci, R. Asymmetric palladacycle complexes with N,O-bidentate barbiturate ligands: Preparation, characterization and catalytic application in Suzuki-Miyaura reaction. J. Mol. Struct. 2019, 1195, 246–251. [Google Scholar] [CrossRef]
  63. Canty, A.J.; Hoare, J.L.; Skelton, B.W.; White, A.H.; van Koten, G. Synthesis and reactivity of poly(pyrazol-1-yl) borate derivatives of cyclopalladation systems, including structural studies of Pd{2-CH2C6H4P(o-tolyl)2-C,P}{(pz)3BH-N,N’} and Pd(C6H4C5H4N-C2,N’){(pz)3BH-N,N’}. J. Organomet. Chem. 1998, 552, 23–29. [Google Scholar] [CrossRef]
  64. Kim, Y.J.; Chang, X.; Han, J.T.; Lim, M.S.; Lee, S.W. Cyclometallated Pd(II) azido complexes containing 6-phenyl-2,2′- bipyridyl or 2-phenylpyridyl derivatives: Synthesis and reactivity toward organic isocyanides and isothiocyanates. Dalton Trans. 2004, 3699–3708. [Google Scholar] [CrossRef]
  65. Anderson, G.K.; Cross, R.J.; Leaman, S.A.; Robertson, F.J.; Rycroft, D.S.; Rocamora, M. Conformation and ligand exchange reactions of trans-[PdCl(C6H4-2-N2Ph)(PR3)2] and related complexes. J. Organomet. Chem. 1990, 388, 221–231. [Google Scholar] [CrossRef]
  66. Serrano, J.L.; Garcia, L.; Perez, J.; Perez, E.; Vives, J.; Sanchez, G.; Lopez, G.; Molins, E.; Orpen, A.G. Synthesis and characterization of new cyclometallated Pd(II) complexes with bridging or terminal imidato ligands. Crystal structures of [{Pd(μ-succinimide)(phpy)}2] and [Pd(azb)(succinimide)(PPh3)] (phpy = 2-phenylpyridine; azb =/azobenzene). Polyhedron 2002, 21, 1589–1596. [Google Scholar] [CrossRef]
  67. Atla, S.B.; Kelkar, A.A.; Puranik, V.G.; Bensch, W.; Chaudhari, R.V. NC palladacycles in the Heck arylation of ethylene: Synthesis, structure and their reactivity. J. Organomet. Chem. 2009, 694, 683–690. [Google Scholar] [CrossRef]
  68. Kim, M.; Picot, A.; Gabbai, F.P. Remarkably Efficient Hydrolysis of Methylparathion Catalyzed by [2-(2-Pyridyl)phenyl-C,N]palladium(II) Complexes. Inorg. Chem. 2006, 45, 5600–5606. [Google Scholar] [CrossRef]
  69. Fairlamb, I.J.S.; Kapdi, A.R.; Lee, A.F.; Sanchez, G.; Lopez, G.; Serrano, J.L.; Garcia, L.; Perez, J.; Perez, E. Mono- and binuclear cyclometallated palladium(II) complexes containing bridging (N,O-) and terminal (N-) imidate ligands: Air stable, thermally robust and recyclable catalysts for cross-coupling processes. Dalton Trans. 2004, 3970–3981. [Google Scholar] [CrossRef]
  70. Serrano, J.L.; Perez, J.; Garcia, L.; Perez, E.; Sanchez, G.; Kapdi, A. A convenient route to prepare mono- and dinuclear 2-benzoylpyridine palladacycles with imidate ligands. J. Organomet. Chem. 2016, 814, 57–62. [Google Scholar] [CrossRef]
  71. Sanchez, G.; Garcia, J.; Liu, M.; Garcia, L.; Perez, J.; Perez, E.; Serrano, J.L. Synthesis and characterization of cyclometallated palladium(II) complexes with 2-(diphenylphosphino)benzaldehyde. J. Coord. Chem. 2013, 66, 2919–2929. [Google Scholar] [CrossRef]
  72. Sanchez, G.; Serrano, J.L.; Moral, M.A.; Perez, J.; Molins, E.; Lopez, G. New cyclometalated palladium(II) complexes with iminophosphines Crystal structures of [Pd(CxN)(o-Ph2PC6H4–CH=NR)][PF6] (CxN=azobenzene, R=Et; CxN=2-phenylpyridine, R=Me). Polyhedron 1999, 18, 3057–3064. [Google Scholar]
  73. Sanchez, G.; Garcia, J.; Meseguer, D.; Serrano, J.L.; Garcia, L.; Perez, J.; Lopez, G. Synthesis and characterisation of cyclometallated palladium(II) complexes with phosphine–carboxylate and phosphine–amide ligands. Dalton Trans. 2003, 4709–4717. [Google Scholar] [CrossRef]
  74. Zhang, X.; Wang, H.; Yuan, J.; Guo, S. Palladacycles incorporating a carboxylate-functionalized phosphine ligand: Syntheses, characterization and their catalytic applications toward Suzuki couplings in water. Transit. Met. Chem. 2017, 42, 727–738. [Google Scholar] [CrossRef]
  75. Sanchez, G.; Garcia, J.; Meseguer, D.; Serrano, J.L.; Garcia, L.; Perez, J.; Lopez, G. New palladacyclic complexes with pyridylphosphine ligands: Crystal structures of [Pd(Azb)(Ph2POCH2Py-P,N)][PF6] and [Pd(Phpy)(Ph2PNHPy-P,N)][PF6]. Inorg. Chim. Acta 2004, 357, 4568–4576. [Google Scholar] [CrossRef]
  76. Carbo, M.; Falvello, L.R.; Navarro, R.; Soler, T.; Urriolabeitia, E.P. Carbo, M.; Falvello, L.R.; Navarro, R.; Soler, T.; Urriolabeitia, E.P. Different Coordination Modes of the Polyfunctional Ylide Ph3P= C(H)C(O)CH2C(O)OEt: C- vs. O,O’-Bonding in PdII, PtII and AuI Complexes. Eur. J. Inorg. Chem. 2004, 2004, 2338–2347. [Google Scholar] [CrossRef]
  77. Falvello, L.R.; Gines, J.C.; Carbo, J.J.; Lledos, A.; Navarro, R.; Soler, T.; Urriolabeitia, E.P. Palladium Complexes of a Phosphorus Ylide with Two Stabilizing Groups: Synthesis, Structure, and DFT Study of the Bonding Modes. Inorg. Chem. 2006, 45, 6803–6815. [Google Scholar] [CrossRef] [PubMed]
  78. Carbo, M.; Marin, N.; Navarro, R.; Soler, T.; Urriolabeitia, E.P. Synthesis and Structure of Pd and Pt Complexes with Doubly Stabilized Phosphorus Ylides. Eur. J. Inorg. Chem. 2006, 2006, 4629–4641. [Google Scholar] [CrossRef]
  79. Falvello, L.R.; Llusar, R.; Margalejo, M.E.; Navarro, R.; Urriolabeitia, E.P. Stabilized Bis-ylides as a Source of Carbene Ligands in Palladium(II) and Platinum(II) Complexes. Organometallics 2003, 22, 1132–1144. [Google Scholar] [CrossRef]
  80. Aguilar, D.; Gonzalez, G.; Villuendas, P.; Urriolabeitia, E.P. Bis-cyclometalated complexes of Pd(II) and Pd(IV) from iminophosphoranes: Synthesis, structure and reactivity. J. Organomet. Chem. 2014, 767, 27–34. [Google Scholar] [CrossRef]
  81. Gayakhe, V.; Ardhapure, A.; Kapdi, A.R.; Sanghvi, Y.S.; Serrano, J.L.; Garcia, L.; Perez, J.; García, J.; Sanchez, G.; Fischer, C.; et al. Water-Soluble Pd−Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling. J. Org. Chem. 2016, 81, 2713–2729. [Google Scholar] [CrossRef] [PubMed]
  82. Serrano, J.L.; Perez, J.; García, L.; Sanchez, G.; García, J.; Lozano, P.; Zende, V.; Kapdi, A. N-Heterocyclic-Carbene Complexes Readily Prepared from Di-μ-hydroxopalladacycles Catalyze the Suzuki Arylation of 9-Bromophenanthrene. Organometallics 2015, 34, 522–533. [Google Scholar] [CrossRef]
  83. Hu, Y.; Guo, S. Palladacycles bearing COOH-/ester-functionalized N-heterocyclic carbenes: Divergent syntheses and catalytic applications. Appl. Organometal. Chem. 2019, 33, e4703. [Google Scholar] [CrossRef]
  84. Gunay, M.E.; Gumusada, R.; Ozdemir, N.; Dincer, M.; Cetinkaya, B. Synthesis, X-ray structures, and catalytic activities of (κ2-C,N)-palladacycles bearing imidazol-2-ylidenes. J. Organomet. Chem. 2009, 694, 2343–2349. [Google Scholar] [CrossRef]
  85. Firinci, R.; Gunay, M.E.; Gokce, A.G. Synthesis, characterization and catalytic activity in Suzuki– Miyaura coupling of palladacycle complexes with n-butylsubstituted N-heterocyclic carbene ligands. Appl. Organometal. Chem. 2018, 32, e4109. [Google Scholar] [CrossRef]
  86. Gumusada, R.; Ozdemir, N.; Gunay, M.E.; Dincer, M.; Soylu, M.S.; Cetinkaya, B. Synthesis, characterization and catalytic activity of Pd(II) complexes with N-allyl functionalized imidazol-2-ylidenes in Suzuki–Miyaura reaction. Appl. Organometal. Chem. 2014, 28, 324–331. [Google Scholar] [CrossRef]
  87. Baier, H.; Kelling, A.; Schilde, U.; Holdt, H.J. Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction. Z. Anorg. Allg. Chem. 2016, 642, 140–147. [Google Scholar] [CrossRef]
  88. Gunay, M.E.; Cogaslioglu, G.G.; Firinci, R. The synthesis, characterization, and catalytic properties of (ĸ2 − C,N)-palladacycles with N-heterocyclic carbenebased ancillary ligands. Turk. J. Chem. 2015, 39, 1310–1316. [Google Scholar] [CrossRef]
  89. Nasielski, J.; Hadei, N.; Achonduh, G.; Kantchev, E.A.B.; O’Brien, C.J.; Lough, A.; Organ, M.G. Structure–Activity Relationship Analysis of Pd–PEPPSI Complexes in Cross-Couplings: A Close Inspection of the Catalytic Cycle and the Precatalyst Activation Model. Chem. Eur. J. 2010, 16, 10844–10853. [Google Scholar] [CrossRef]
  90. Sayah, M.; Lough, A.J.; Organ, M.G. Sulfination by Using Pd-PEPPSI Complexes: Studies into Precatalyst Activation, Cationic and Solvent Effects and the Role of Butoxide Base. Chem. Eur. J. 2013, 19, 2749–2756. [Google Scholar] [CrossRef]
  91. Sayah, M.; Organ, M.G. Potassium Isopropoxide: For Sulfination It is the Only Base You Need! Chem. Eur. J. 2013, 19, 16196–16199. [Google Scholar] [CrossRef]
  92. Yan, X.; Feng, R.; Yan, C.; Lei, P.; Guo, S.; Huynh, H.V. A palladacyclic N-heterocyclic carbene system used to probe the donating abilities of monoanionic chelators. Dalton Trans. 2018, 47, 7830–7838. [Google Scholar] [CrossRef] [PubMed]
  93. Kilincarslan, R.; Gunay, M.E.; Firinci; Denizalti, S.; Cetinkaya, B. New palladium(II)–N-heterocyclic carbene complexes containing benzimidazole-2-ylidene ligand derived from menthol: Synthesis, characterization and catalytic activities. Appl. Organometal. Chem. 2016, 30, 268–272. [Google Scholar] [CrossRef]
  94. Tham, M.J.R.; Babak, M.V.; Ang, W.H. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew. Chem. Int. Ed. 2020, 59, 19070–19078. [Google Scholar] [CrossRef] [PubMed]
  95. Constable, E.C.; Thompson, A.M.W.C.; Leese, T.A.; Reese, D.G.F.; Tocher, D.A. Cyclometallation reactions of 2-phenylpyridine; crystal and molecular structure of (2-{2-pyridyl}phenyl)palladium(II) tetramer and (2-{2-pyridyl}phenyl)mercury(II) tetramer. Inorg. Chim. Acta 1991, 182, 93–100. [Google Scholar] [CrossRef]
  96. Klement, U. Crystal structure of di-μ-chloro-bis(2-phenylpyridinato-C2,N’-palladiumII)), ((C11H8N)PdCl)2. Z. Kristallogr. 1993, 208, 299–301. [Google Scholar]
  97. Ha, K.; Kristallogr, Z. Crystal structure of di(μ2-chlorido)bis[2-(2-pyridyl)phenyl-κ2N,C1]dipalladium(II), C22H16Cl2N2Pd2. New Cryst. Struct. 2016, 231, 331–332. [Google Scholar]
  98. Perez, J.; Serrano, J.L.; Galiana, J.M.; Cumbrera, F.L.; Ortiz, A.L.; Sanchez, G.; Garcia, J. Structure determination of di-μ-hydroxo-bis[(2-(2-pyridyl)phenyl-κ2N,C1)palladium(II)] by X-ray powder diffractometry. Acta Crystallogr. 2007, B63, 75–80. [Google Scholar] [CrossRef] [PubMed]
  99. Perez, J.; Espinosa, A.; Galiana, J.M.; Perez, E.; Serrano, J.L.; Cabeza, A.; Aranda, M.A.G. Crystal Packing in Di-(μ-OH)-ortho-palladated Complexes—A DFT Insight into the Molecular Structure and Solid-State Interactions. Eur. J. Inorg. Chem. 2008, 2008, 3687–3697. [Google Scholar] [CrossRef]
  100. Gutierrez, M.A.; Newkome, G.R.; Palladium, J.S.C. Cyclometallation. Palladium 2-arylpyridine colmplexes. J. Organomet. Chem. 1980, 202, 341–350. [Google Scholar] [CrossRef]
  101. Constable, E.C.; Leese, T.A. Metal exchange in organomercury complexes; a facile route to cyclometallated transition metal complexes. J. Organomet. Chem. 1987, 335, 293–299. [Google Scholar] [CrossRef]
  102. Powers, D.C.; Ritter, T. Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroatom bond formation. Nat. Chem. 2009, 1, 302–309. [Google Scholar] [CrossRef] [PubMed]
  103. Powers, D.C.; Benitez, D.; Tkatchouk, E.; Goddard, W.A., II; Ritter, T. Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes. J. Am. Chem. Soc. 2010, 132, 14092–14103. [Google Scholar] [CrossRef] [PubMed]
  104. Wang, X.; Ji, X.; Shao, C.; Zhang, Y.; Zhang, Y. Palladium-catalyzed C–H alkylation of 2-phenylpyridines with alkyl iodides. Org. Biomol. Chem. 2017, 15, 5616–5624. [Google Scholar] [CrossRef] [PubMed]
  105. Hossian, A.; Manna, M.K.; Mannaa, K.; Jana, R. Palladium-catalyzed decarboxylative, decarbonylative and dehydrogenative C(sp2)–H acylation at room temperature. Org. Biomol. Chem. 2017, 15, 6592–6603. [Google Scholar] [CrossRef] [PubMed]
  106. Liu, L.; Gu, Y.C.; Zhang, C.P. Palladium-catalyzed C–H trifluoromethylselenolation of arenes with [Me4N][SeCF3] and an oxidant. Chem. Commun. 2022, 58, 9238–9241. [Google Scholar] [CrossRef] [PubMed]
  107. Thu, H.Y.; Yu, W.Y.; Che, C.M. Intermolecular Amidation of Unactivated sp2 and sp3 C-H Bonds via Palladium-Catalyzed Cascade C-H Activation/Nitrene Insertion. J. Am. Chem. Soc. 2006, 128, 9048–9049. [Google Scholar] [CrossRef]
  108. Dincer, M.; Ozdemir, N.; Gunay, M.E.; Cetinkaya, B. Di-μ-acetato-κ4O:O’-bis{[2-(2-pyridyl)phenyl-κ2C,N]palladium(II)}. Acta Crystallogr. 2008, E64, m381. [Google Scholar]
  109. Kim, M.; Taylor, T.J.; Gabbai, F.P. Hg(II) · · · Pd(II) Metallophilic Interactions. J. Am. Chem. Soc. 2008, 130, 6332–6333. [Google Scholar] [CrossRef]
  110. Qin, Q.P.; Zou, B.Q.; Tan, M.X.; Luo, D.M.; Wang, Z.F.; Wang, S.L.; Liu, Y.C. High in vitro anticancer activity of a dinuclear palladium(II) complex with a 2-phenylpyridine ligand. Inorg. Chem. Commun. 2018, 96, 106–110. [Google Scholar] [CrossRef]
  111. Tzeng, B.C.; Huang, Y.C.; Chen, B.S.; Wu, W.M.; Lee, S.Y.; Lee, G.H.; Peng, S.M. Crystal-Engineering Studies of Coordination Polymers and a Molecular-Looped Complex Containing Dipyridyl-Amide Ligands. Inorg. Chem. 2007, 46, 186–195. [Google Scholar] [CrossRef]
  112. Perez, J.; Espinosa, A.; Galiana, J.M.; Perez, E.; Serrano, J.L.; Insausti, M. Orthogonal non-covalent binding forces in solid state supramolecular herringbone-shaped “interlocked dimers”. Pseudopolymorphism in [(ppy)Pd(μ-pz)]2 (ppy = 2-(2-pyridyl)phenyl, pz = pyrazol-1-yl) complex. Dalton Trans. 2009, 9625–9636. [Google Scholar] [CrossRef] [PubMed]
  113. Icsel, C.; Yilmaz, V.T.; Kaya, Y.; Samli, H.; Harrison, W.T.A.; Buyukgungor, O. New palladium(II) and platinum(II) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2′-bipyridine and 2,2′-dipyridylamine: Synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity. Dalton Trans. 2015, 44, 6880–6895. [Google Scholar] [CrossRef] [PubMed]
  114. Gryaznova, T.V.; Khrizanforov, M.N.; Levitskaya, A.I.; Rizvanov, I.K.; Balakina, M.Y.; Ivshin, K.A.; Kataeva, O.N.; Budnikova, Y.H. Electrochemically Driven and Acid-Driven Pyridine-Directed ortho-Phosphorylation of C(sp2)−H Bonds. Organometallics 2020, 39, 2446–2454. [Google Scholar] [CrossRef]
  115. Dudkina, Y.B.; Gryaznova, T.V.; Kataeva, O.N.; Budnikova, Y.H.; Sinyashin, O.G. Electrochemical C—H phosphorylation of 2_phenylpyridine in the presence of palladium salts. Russ. Chem. Bull. Int. Ed. 2014, 63, 2641–2646. [Google Scholar] [CrossRef]
  116. Gryaznova, T.V.; Dudkina, Y.B.; Islamov, D.R.; Kataeva, O.N.; Sinyashin, O.G.; Vicic, D.A.; Budnikova, Y.H. Pyridine-directed palladium-catalyzed electrochemical phosphonation of C(sp2)-H bond. J. Organomet. Chem. 2015, 785, 68–71. [Google Scholar] [CrossRef]
  117. Li, C.; Yano, T.; Ishida, N.; Murakami, M. Pyridine-Directed Palladium-Catalyzed Phosphonation of C(sp2)-H Bonds. Angew. Chem. Int. Ed. 2013, 52, 9801–9804. [Google Scholar] [CrossRef]
  118. Lee, K.E.; Jeon, H.T.; Han, S.Y.; Ham, J.; Kim, Y.J.; Lee, S.W. Cyclopalladated azido complexes containing C,N-donor (HC~N = 2-(2′-thienyl)pyridine, azobenzene, 3,3′-dimethyl azobenzene, N,N’-dimethylbenzylamine, 2-phenylpyridine) ligands: Reactivity towards organic unsaturated compounds and catalytic properties. Dalton Trans. 2009, 6578–6592. [Google Scholar] [CrossRef]
  119. Murray, C.A.; Cardin, C.J.; Greenland, B.W.; Swift, A.; Colquhoun, H.M. Pairwise Assembly of Organopalladium(II) Units with Cyanurato(3−) and Trithiocyanurato(3−) Ligands: Formation of Chiral Pd12, Pd10, and Pd9 Cage-Molecules. Inorg. Chem. 2013, 52, 10424–10430. [Google Scholar] [CrossRef]
  120. Cornioley-Deuschel, C.; Ward, T.; von Zelewsky, A. Complexes with a Pincers. 2,6-Diphenylpyridine as Twofold-Deprotonated (C ∧ N ∧ C) Terdentate Ligand in C,C-trans-, and as Mono-deprotonated (C ∧ N) Chelate Ligand in Chiral C,C-cis-Complexes of Platinum(II) and Palladium(II). Helv. Chim. Acta 1988, 71, 130–133. [Google Scholar] [CrossRef]
  121. Campillo, D.; Escudero, D.; Baya, M.; Martin, A. Heteropolymetallic Architectures as Snapshots of Transmetallation Processes at Different Degrees of Transfer. Chem. Eur. J. 2022, 28, e202104538. [Google Scholar] [CrossRef]
  122. Bartolome, C.; Espinet, P.; Vicente, L.; Palladium, F. Villafane. Neutral Organometallic Palladium(II) Aquo Complexes. Organometallics 2002, 21, 3536–3543. [Google Scholar] [CrossRef]
  123. Oloo, W.; Zavalij, P.Y.; Zhang, J.; Khaskin, E.; Vedernikov, A.N. Preparation and C-X Reductive Elimination Reactivity of Monoaryl PdIV-X Complexes in Water (X = OH, OH2, Cl, Br). J. Am. Chem. Soc. 2010, 132, 14400–14402. [Google Scholar] [CrossRef] [PubMed]
  124. Kim, Y.J.; Lee, J.H.; Kim, T.; Ham, J.; Zheng, Z.N.; Lee, S.W. C,N-Palladacycles Containing N-Heterocyclic Carbene and Azido Ligands—Effective Catalysts for Suzuki–Miyaura Cross-Coupling Reactions. Eur. J. Inorg. Chem. 2012, 2012, 6011–6017. [Google Scholar] [CrossRef]
  125. Xu, C.; Li, H.M.; Xiao, Z.Q.; Wang, Z.Q.; Tang, S.F.; Ji, B.M.; Hao, X.Q.; Song, M.P. Cyclometalated Pd(II) and Ir(III) 2-(4-bromophenyl)- pyridine complexes with N-heterocyclic carbenes (NHCs) and acetylacetonate (acac): Synthesis, structures, luminescent properties and application in one-pot oxidation/Suzuki coupling of aryl chlorides containing hydroxymethyl. Dalton Trans. 2014, 43, 10235–10247. [Google Scholar] [PubMed]
  126. Deprez, N.R.; Sanford, M.S. Synthetic and Mechanistic Studies of Pd-Catalyzed C-H Arylation with Diaryliodonium Salts: Evidence for a Bimetallic High Oxidation State Pd Intermediate. J. Am. Chem. Soc. 2009, 131, 11234–11241. [Google Scholar] [CrossRef] [PubMed]
  127. Yang, Q.L.; Li, C.Z.; Zhang, L.W.; Li, Y.Y.; Tong, X.; Wu, X.Y.; Mei, T.S. Palladium-Catalyzed Electrochemical C−H Alkylation of Arenes. Organometallics 2019, 38, 1208–1212. [Google Scholar] [CrossRef]
  128. Katlenok, E.A.; Balashev, K.P. Binuclear Cyclopalladated Benzo[h]quinoline and 2-Tolylpyridine Complexes with the Bridging 2-Mercaptopyridine Ligand. Russ. J. Gen. Chem. 2013, 83, 128–129. [Google Scholar] [CrossRef]
  129. McEllin, A.J.; Goult, C.A.; Whitwood, A.C.; Lynam, J.M.; Bruce, D.W. On the mercuration, palladation, transmetalation and direct auration of a C^N^C pincer ligand. Dalton Trans. 2023, 52, 872–876. [Google Scholar] [CrossRef]
  130. Kaewthong, A.; Saunders, G.C.; Henderson, W. The thiosulfate (S2O32−) ion; a neglected but simple hetero-donor ligand towards platinum(II), palladium(II) and nickel(II). Inorg. Chim. Acta 2022, 534, 120808. [Google Scholar] [CrossRef]
  131. Hiraki, K.; Fuchita, Y.; Takechi, K. Preparation and Characterization of Novel Six-Membered Cyclopalladated Complexes of 2-Benzylpyridine. Inorg. Chem. 1981, 20, 4316–4320. [Google Scholar] [CrossRef]
  132. Polyakov, V.A.; Ryabov, A.D. Dynamics of the 9,10-Dihydroanthracene Type Inversion of the Six-membered Palladocycle in Chloro(ligand) [2-(2′-pyridylmethyl) phenyl]palladium(II) Complexes. J. Chem. Soc. Dalton Trans. 1986, 589–593. [Google Scholar] [CrossRef]
  133. Finagenova, G.O.; Balashev, K.P. Mixed-Ligand Cyclometalated Pd(II) and Au(III) Complexes Based on 2-Benzylpyridine. Russ. J. Gen. Chem. 2008, 78, 682–684. [Google Scholar] [CrossRef]
  134. Minghetti, G.; Cinellu, M.A.; Stoccoro, S.; Zucca, A. Adducts and cyclometalated derivatives of palladium(II) with 2-(1-methylbenzyl)pyridine Gazz. Chim. Ital. 1992, 122, 455–459. [Google Scholar]
  135. Canty, A.J.; Minchin, N.J.; Skelton, B.W.; White, A.H. Interaction of Palladium(II) Acetate with Substituted Pyridines, including a Cyclometallation Reaction and the Structure of [Pd{meso-[(py)PhMeC]2C5H3N}(O2CMe)][O2CMe].3H2O. J. Chem. Soc. Dalton Trans. 1986, 2205–2210. [Google Scholar] [CrossRef]
  136. Musaev, D.G.; Kaledin, A.; Shi, B.F.; Yu, J.Q. Key Mechanistic Features of Enantioselective C−H Bond Activation Reactions Catalyzed by [(Chiral Mono-N-Protected Amino Acid)−Pd(II)] Complexes. J. Am. Chem. Soc. 2012, 134, 1690–1698. [Google Scholar] [CrossRef]
  137. Fuchita, Y.; Hiraki, K.; Kage, Y. Syntheses of Six-membered Cyclopalladated Complexes of 2-Benzoylpyridine. Bull. Chem. Soc. Jpn 1982, 44, 955–956. [Google Scholar] [CrossRef]
  138. de Geest, D.J.; O’Keefe, B.J.; Steel, P.J. Cyclometallated compounds. XIII. Cyclopalladation of 2-phenoxypyridine and structurally-related compounds. J. Organomet. Chem. 1999, 579, 97–105. [Google Scholar] [CrossRef]
  139. Maassarani, F.; Pfeffer, M.; Spencer, J.; Wehman, E. Selective hetero- and carbo-cycle syntheses via masked cyclopalladated secondary amine and ketone functions. J. Organomet. Chem. 1994, 466, 265–271. [Google Scholar] [CrossRef]
  140. Kondrashov, M.; Raman, S.; Wendt, O.F. Metal controlled regioselectivity in the cyclometallation of 2-(1-naphthyl)-pyridine. Chem. Commun. 2015, 51, 911–913. [Google Scholar] [CrossRef]
  141. Ford, A.; Sinn, E.; Woodward, S. Regioselectivity in metallation reactions of 2-(2′-naphthyl) pyridine: 1′-versusu 3′-reactivity in mercuration and palladation reactions. Crystal structure of chloro(pyridine)[2-(2′-pyridinyl) naphthyl-C3,N]palladium. J. Organomet. Chem. 1995, 493, 215–220. [Google Scholar] [CrossRef]
  142. Shi, B.F.; Maugel, N.; Zhang, Y.H.; Yu, J.Q. PdII-Catalyzed Enantioselective Activation of C(sp2)-H and C(sp3)-H Bonds Using Monoprotected Amino Acids as Chiral Ligands. Angew. Chem. Int. Ed. 2008, 47, 4882–4886. [Google Scholar] [CrossRef]
  143. Chu, J.H.; Lin, P.S.; Wu, M.J. Palladium(II)-Catalyzed Ortho Arylation of 2-Phenoxypyridines with Potassium Aryltrifluoroborates via C-H Functionalization. Organometallics 2010, 29, 4058–4065. [Google Scholar] [CrossRef]
  144. Yao, J.; Feng, R.; Wu, Z.; Liu, Z.; Zhang, Y. Palladium-Catalyzed Decarboxylative Coupling of α-Oxocarboxylic Acids with C(sp2)-H of 2-Aryloxypyridines. Adv. Synth. Catal. 2013, 355, 1517–1522. [Google Scholar] [CrossRef]
  145. Yadav, M.; Jat, R.S.; Sarma, B.; Bhanuchandra, M. 2-Pyridyl Sulfoxide Directed Pd(II)-Catalyzed C–H Olefination of Arenes with Molecular Oxygen as the Sole Oxidant. Synthesis 2021, 53, 2269–2276. [Google Scholar]
  146. Steel, P.J.; Caygill, G.B. Cyclometallated compounds V. Double cyclopalladation of diphenyl pyrazines and related ligands. J. Organomet. Chem. 1990, 395, 359–373. [Google Scholar] [CrossRef]
  147. Balashev, K.P.; Kulikova, M.V.; Kvam, P.J.; Songstad, Y. Synthesis and properties of platinum(II) and palladium(II) (benzo[h]quinolinato-C,N)ethylenediamine complexes. Russ. J. Gen. Chem. 1999, 69, 1346–1347. [Google Scholar]
  148. Powers, D.C.; Lee, E.; Ariafard, A.; Sanford, M.S.; Yates, B.F.; Canty, A.J.; Ritter, T. Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd−Pd Bond Cleavage. J. Am. Chem. Soc. 2012, 134, 12002–12009. [Google Scholar] [CrossRef]
  149. Dudkina, Y.B.; Kholin, K.V.; Gryaznova, T.V.; Islamov, D.R.; Kataeva, O.N.; Rizvanov, I.K.; Levitskaya, A.I.; Fominykh, O.D.; Balakina, M.Y.; Sinyashin, O.G.; et al. Redox trends in cyclometalated palladium(II) Complexes. Dalton Trans. 2017, 46, 165–177. [Google Scholar] [CrossRef] [PubMed]
  150. Selbin, J.; Gutierrez, M.A. Cyclometallation IV. Palladium(II) compounds with benzo[h]quinoline and substituted 2,6-diarylpyridines. J. Organomet. Chem. 1983, 246, 95–104. [Google Scholar] [CrossRef]
  151. Dehand, J.; Mauro, A.; Ossor, H.; Pfeffer, M.; Santos, R.d.A.; Lechat, J.R. Reactivity of cyclopalladated compounds VIII. Synthesis of cyclometallated compounds with an oxygen as the donor atom. Crystal and molecular structure of (8-methylquinoline-C,N)(1-methoxynaphthalene-8-C,O)palladium(II). J. Organomet. Chem. 1983, 250, 537–550. [Google Scholar] [CrossRef]
  152. Afandi, Z.S.; Al-Jibori, S.A.; Ferjani, H.; Al-Shammar, R.H.; Hatshan, M.R.; Al-Janabi, A.S. Ortho-palladated complexes with aromatic N-donor ligands, synthesis, characterization, molecular structures, antibacterial and anticancer activity. Inorg. Chem. Commun. 2023, 149, 110399. [Google Scholar] [CrossRef]
  153. Oeschger, R.J.; Chen, P. Structure and Gas-Phase Thermochemistry of a Pd/Cu Complex: Studies on a Model for Transmetalation Transition States. J. Am. Chem. Soc. 2017, 139, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
  154. Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A.E.; Tang, P.; Goddard, W.A., II; Ritter, T. Mechanism of C-F Reductive Elimination from Palladium(IV) Fluorides. J. Am. Chem. Soc. 2010, 132, 3793–3807. [Google Scholar] [CrossRef]
  155. Furuya, T.; Ritter, T. Carbon-Fluorine Reductive Elimination from a High-Valent Palladium Fluoride. J. Am. Chem. Soc. 2008, 130, 10060–10061. [Google Scholar] [CrossRef]
  156. Lee, E.; Kamlet, A.S.; Powers, D.C.; Neumann, C.N.; Boursalian, G.B.; Furuya, T.; Choi, D.C.; Hooker, J.M.; Ritter, T. A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging. Science 2011, 334, 639–642. [Google Scholar] [CrossRef]
  157. Brandt, J.R.; Lee, E.; Boursalian, G.B.; Ritter, T. Mechanism of electrophilic fluorination with Pd(IV): Fluoride capture and subsequent oxidative fluoride transfer. Chem. Sci. 2014, 5, 169–179. [Google Scholar] [CrossRef]
  158. Rivada-Wheelaghan, O.; Comas-Vives, A.; Fayzullin, R.R.; Lledos, A.; Khusnutdinova, J.R. Dynamic PdII/CuI Multimetallic Assemblies as Molecular Models to Study Metal–Metal Cooperation in Sonogashira Coupling. Chem. Eur. J. 2020, 26, 12168–12179. [Google Scholar] [CrossRef]
  159. Diez, A.; Fornies, J.; Garcia, A.; Lalinde, E.; Moreno, M.T. Synthesis, Structural Characterization, and Photophysical Properties of Palladium and Platinum(II) Complexes Containing 7,8-Benzoquinolinate and Various Phosphine Ligands. Inorg. Chem. 2005, 44, 2443–2453. [Google Scholar] [CrossRef] [PubMed]
  160. Samiee, S.; Noorabadi, F.E.; Azadi, R. Cyclopalladated benzo[h]quinolinate complexes based on stabilized phosphonium-phosphine ylides: Synthesis, characterization, and application as catalyst in aqueous-phase Suzuki-Miyaura reaction. Polyhedron 2021, 195, 114973. [Google Scholar] [CrossRef]
  161. Smith, M.B.; Slawin, A.M.Z. Synthesis and characterisation of E,O-mixed donor (E=P, S or Se) ligand complexes of palladium(II) and platinum(II). Inorg. Chim. Acta 2000, 299, 172–179. [Google Scholar] [CrossRef]
  162. Samiee, S.; Gable, R.W. A new and unexpected coordination mode of a bis-phosphine monoxide (BPMO) ligand in a palladacycle complex. J. Mol. Struct. 2022, 1250, 131763. [Google Scholar] [CrossRef]
  163. Rivada-Wheelaghan, O.; Deolka, S.; Govindarajan, R.; Khaskin, E.; Fayzullin, R.R.; Pal, S.; Khusnutdinova, J.R. Construction of modular Pd/Cu multimetallic chains via ligand- and anion-controlled metal–metal interactions. Chem. Commun. 2021, 57, 10206–10209. [Google Scholar] [CrossRef] [PubMed]
  164. Pinter, P.; Soellner, J.; Strassner, T. Blue emissive palladium(II) complex with benzoquinoline and N-heterocyclic carbene ligands. J. Organomet. Chem. 2023, 991, 122669. [Google Scholar] [CrossRef]
  165. Arnold, P.L.; Sanford, M.S.; Pearson, S.M. Chelating N-Heterocyclic Carbene Alkoxide as a Supporting Ligand for PdII/IV C-H Bond Functionalization Catalysis. J. Am. Chem. Soc. 2009, 131, 13912–13913. [Google Scholar] [CrossRef] [PubMed]
  166. Liu, F.; Hu, Y.Y.; Li, D.; Zhou, Q.; Lu, J.M. N-Heterocyclic carbene-palladacyclic complexes: Synthesis, characterization and their applications in the C-N coupling and α-arylation of ketones using aryl chlorides. Tetrahedron 2018, 74, 5683–5690. [Google Scholar] [CrossRef]
  167. Campbell, M.G.; Powers, D.C.; Raynaud, J.; Graham, M.J.; Xie, P.; Lee, E.; Ritter, T. Synthesis and structure of solution-stable one-dimensional palladium wires. Nat. Chem. 2011, 3, 949–953. [Google Scholar] [CrossRef]
  168. Campbell, M.G.; Zheng, S.L.; Ritter, T. One-Dimensional Palladium Wires: Influence of Molecular Changes on Supramolecular Structure. Inorg. Chem. 2013, 52, 13295–13297. [Google Scholar] [CrossRef]
  169. Powers, D.C.; Ritter, T. A Transition State Analogue for the Oxidation of Binuclear Palladium(II) to Binuclear Palladium(III) Complexes. Organometallics 2013, 32, 2042–2045. [Google Scholar] [CrossRef]
  170. Whitfield, S.R.; Sanford, M.S. Reactivity of Pd(II) Complexes with Electrophilic Chlorinating Reagents: Isolation of Pd(IV) Products and Observation of C-Cl Bond-Forming Reductive Elimination. J. Am. Chem. Soc. 2007, 129, 15142–15143. [Google Scholar] [CrossRef]
  171. Ye, Y.; Ball, N.D.; Kampf, J.W.; Sanford, M.S. Oxidation of a Cyclometalated Pd(II) Dimer with “CF3+”: Formation and Reactivity of a Catalytically Competent Monomeric Pd(IV) Aquo Complex. J. Am. Chem. Soc. 2010, 132, 14682–14687. [Google Scholar] [CrossRef] [PubMed]
  172. Pazderski, L.; Pawlak, T.; Sitkowski, J.; Kozerski, L.; Szlyk, E. 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine. Magn. Reson. Chem. 2009, 47, 932–941. [Google Scholar] [CrossRef] [PubMed]
  173. Pazderski, L. 15N and 31P NMR Coordination Shifts in Transition Metal Complexes with Nitrogen- and Phosphorus-Containing Heterocycles. Annu. Rep. NMR Spectrosc. 2013, 80, 33–180. [Google Scholar]
  174. Pazderski, L. 15N NMR coordination shifts in transition metal complexes and organometallics with heterocycles containing nitrogen—Update for 2012–20. Annu. Rep. NMR Spectrosc. 2020, 101, 151–284. [Google Scholar]
Scheme 1. Pd(II)-2PPY* compounds (R1, R2—any substituents) with L1, L2 monodentate ligands or LL bidentate ligand.
Scheme 1. Pd(II)-2PPY* compounds (R1, R2—any substituents) with L1, L2 monodentate ligands or LL bidentate ligand.
Crystals 13 01482 sch001
Scheme 2. Pd(II)-2ArPY* compounds with 2ArPY* of the type A (Z = CH2 in 2-benzylpyridine*, CO in 2-benzoylpyridine*, O in 2-phenoxypyridine*, S in 2-phenylsulfanylpyridine*, NH in 2-anilinopyridine*; R1, R2—any substituents) with L1, L2 monodentate ligands or LL bidentate ligand.
Scheme 2. Pd(II)-2ArPY* compounds with 2ArPY* of the type A (Z = CH2 in 2-benzylpyridine*, CO in 2-benzoylpyridine*, O in 2-phenoxypyridine*, S in 2-phenylsulfanylpyridine*, NH in 2-anilinopyridine*; R1, R2—any substituents) with L1, L2 monodentate ligands or LL bidentate ligand.
Crystals 13 01482 sch002
Scheme 3. Pd(II)-2ArPY* compounds with 2ArPY* of the type B (2-(naphth-1-yl)pyridine* (top), 2-(naphth-2-yl)pyridine* (bottom)) with L1, L2 monodentate ligands or LL bidentate ligand.
Scheme 3. Pd(II)-2ArPY* compounds with 2ArPY* of the type B (2-(naphth-1-yl)pyridine* (top), 2-(naphth-2-yl)pyridine* (bottom)) with L1, L2 monodentate ligands or LL bidentate ligand.
Crystals 13 01482 sch003
Scheme 4. Pd(II)-ArPY#* compounds (ArPY#* = 2-phenylquinoline* (top) and 7,8-benzoquinoline* (bottom)) with L1, L2 monodentate ligands or LL bidentate ligand.
Scheme 4. Pd(II)-ArPY#* compounds (ArPY#* = 2-phenylquinoline* (top) and 7,8-benzoquinoline* (bottom)) with L1, L2 monodentate ligands or LL bidentate ligand.
Crystals 13 01482 sch004
Scheme 5. Examples of dimeric [Pd(2ppy*)(µ-LL)]2 molecules: [Pd(2ppy*)(µ-Cl)]2 (cisoid orientation of nitrogen atoms) and [Pd(2ppy*)(µ-CH3COO)]2 (transoid orientation of nitrogen atoms); analogous structures appear for various 2PPY*, 2ArPY*, and ArPY#* ligands.
Scheme 5. Examples of dimeric [Pd(2ppy*)(µ-LL)]2 molecules: [Pd(2ppy*)(µ-Cl)]2 (cisoid orientation of nitrogen atoms) and [Pd(2ppy*)(µ-CH3COO)]2 (transoid orientation of nitrogen atoms); analogous structures appear for various 2PPY*, 2ArPY*, and ArPY#* ligands.
Crystals 13 01482 sch005
Figure 1. Annual numbers of Pd(II), Pd(III), and Pd(IV) compounds with 2-arylpyridines* for which single crystal X-ray structures were published in the years 1991–2023.
Figure 1. Annual numbers of Pd(II), Pd(III), and Pd(IV) compounds with 2-arylpyridines* for which single crystal X-ray structures were published in the years 1991–2023.
Crystals 13 01482 g001
Figure 2. The X-ray structure of [Pd(2ppy*)(μ-Cl)]2 (SOHDUO [95]), an example of Pd(II)-(2-arylpyridine*) dimer with both 2-arylpyridine* ligands positioned nearly in the same plane.
Figure 2. The X-ray structure of [Pd(2ppy*)(μ-Cl)]2 (SOHDUO [95]), an example of Pd(II)-(2-arylpyridine*) dimer with both 2-arylpyridine* ligands positioned nearly in the same plane.
Crystals 13 01482 g002
Figure 3. The X-ray structure of [Pd(2ppy*)(μ-CH3COO)]2 (XEMQIQ [107]), an example of Pd(II)-(2-arylpyridine*) dimer with both 2-arylpyridine* ligands positioned in distinct but nearly parallel planes.
Figure 3. The X-ray structure of [Pd(2ppy*)(μ-CH3COO)]2 (XEMQIQ [107]), an example of Pd(II)-(2-arylpyridine*) dimer with both 2-arylpyridine* ligands positioned in distinct but nearly parallel planes.
Crystals 13 01482 g003
Figure 4. The X-ray structure of [Pd(2ppy*)(CH3COO)(μ-CH3COO)]2 (CUHQAY [44,45]), an example of Pd(III)-(2-arylpyridine*) dimer; both 2-arylpyridine* ligands are positioned in distinct but nearly parallel planes.
Figure 4. The X-ray structure of [Pd(2ppy*)(CH3COO)(μ-CH3COO)]2 (CUHQAY [44,45]), an example of Pd(III)-(2-arylpyridine*) dimer; both 2-arylpyridine* ligands are positioned in distinct but nearly parallel planes.
Crystals 13 01482 g004
Table 11. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in monomeric Pd(II)-(2-arylpyridine*) compounds.
Table 11. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in monomeric Pd(II)-(2-arylpyridine*) compounds.
X-ray (CCDC)Pd-NPd-CN-Pd-CElement Trans to NElement Trans to C
[Pd(2ppy*)L1L2] and [Pd(2ppy*)(LL)]
PUBXAO [2]2.03(1)2.02(1)81.5(4)
REJHOF [9]2.040(9)2.067(8)81.1(3)
POKSAK [13]2.009(1)1.964(2)81.78(7)
VIYXOR [16]2.061(2)2.029(2)81.14(7)
WOMQOH [17]2.054(2)2.009(2)81.7(1)
MAHPIW [19]2.0196(9)1.985(1)81.63(4)
AFABOA [24]2.019(9)1.97(1)82.0(4)
XUYPOZ [25]2.040(6)2.018(6)81.4(2)
JUPNIT [26]2.066(4)
2.045(3)
2.050(4)
2.010(4)
2.011(4)
2.016(5)
81.1(2)
81.2(1)
81.6(2)
POKRUD [13]2.012(2)
2.007(3)
1.965(4)
1.958(4)
81.5(1)
81.3(1)
YABMEV [30]2.026(3)2.001(3)81.0(1)
ASEGUB [30,31]2.026(1)2.004(2)80.84(7)
NUPROH [32]2.037(3)2.011(3)81.0(1)
NUPRUN [32]2.017(4)
2.026(4)
1.992(4)
1.991(4)
81.1(2)
80.7(2)
NUPDOT [32]2.081(9)2.037(9)81.2(4)
UXILET [34]2.025(2)1.995(3)81.0(1)
KEMFEQ [35]2.039(2)2.001(2)81.16(9)
KEMDOY [35]2.030(7)2.029(8)80.7(3)
KEMDEO [35]2.047(2)2.003(3)81.3(1)
KEMFAM [35]2.044(3)2.010(3)81.5(1)
POKSEO [13]2.013(4)
2.007(3)
1.977(4)
1.980(5)
81.1(2)
81.8(2)
DAQNAM [39]2.039(5)1.984(6)81.0(2)
FULWUF [40]2.017(3)1.960(3)82.1(1)
DUBLAP [6]2.036(2)1.980(2)81.49(8)
AFABIU [24]2.012(2)
2.013(2)
1.969(3)
1.970(3)
81.2(1)
81.2(1)
AFABEQ [24]2.017(3)1.973(3)81.7(1)
ZUNYIS [48]2.121(3)
2.136(3)
1.992(4)
1.993(4)
80.7(1)
80.8(2)
AMUNED [41]2.014(2)1.954(3)81.36(9)
AMUNAZ [41]1.999(3)1.951(3)81.9(1)
WOVHEX [49]2.008(3)2.003(3)81.0(1)
EKEDEG [53]2.033(4)1.982(4)81.1(2)
EKEDOQ [53]2.030(3)
2.025(3)
1.965(3)
1.973(3)
81.2(1)
81.5(1)
PERWIU [55]2.010(2)2.001(2)80.90(9)
AMUNON [41]2.031(2)1.987(2)81.34(7)
XAKKOM [58]2.030(3)
2.032(3)
1.983(3)
1.981(3)
81.4(1)
81.5(1)
OJATEZ [59]2.050(2)1.983(2)80.8(1)
AMUNIH [41]2.035(2)
2.034(2)
2.033(2)
1.979(3)
1.983(3)
1.974(3)
81.6(1)
81.4(1)
81.5(1)
BIFDIG [60]2.020(1)2.002(2)81.08(6)
BIFDOM [60]2.018(3)2.000(3)80.8(1)
IGERES [61]2.032(4)1.983(5)80.9(2)
XOFKEL [62]2.028(3)2.012(4)80.8(1)
XOFKIP [62]2.033(4)1.993(5)80.6(2)
HINBAH [63]2.04(1)1.995(9)79.7(4)
GAJMUA [64]2.086(2)2.019(3)81.1(1)
PORNUG [67]2.095(2)2.020(3)80.89(8)
SEMDEU [68]2.089(4)
2.080(3)
2.023(5)
2.025(5)
80.6(2)
81.1(2)
PORNEQ [67]2.085(2)1.985(3)81.1(2)
UMAPAB [70]2.091(1)2.008(1)81.25(5)
CUBVEA [72]2.087(3)1.993(5)80.8(2)
EQIRIF [73]2.081(2)1.996(3)81.22(9)
EQISEC [73]2.112(2)2.007(2)80.73(8)
JAJBOM [75]2.093(2)
2.094(2)
2.005(2)
2.000(2)
81.1(1)
81.3(1)
LOQTIW [80]2.095(2)1.992(2)81.27(7)
IJEYAZ [81]2.092(1)2.006(1)81.36(5)
IGERIW [61]2.081(2)1.990(3)81.13(9)
MUBQUX [82]2.085(6)
2.079(6)
2.095(6)
2.098(6)
2.009(9)
2.01(1)
2.002(9)
2.006(9)
81.7(3)
82.0(3)
81.8(3)
81.8(3)
MUBYAL [82]2.070(1)1.994(2)81.44(6)
MUBRAE [82]2.091(1)2.002(2)80.54(6)
MIXMIS [83]2.096(6)
2.089(6)
2.013(8)
1.988(7)
81.2(3)
81.0(3)
MIXMOY [83]2.087(4)1.996(5)81.4(2)
IGUVOW [84]2.084(2)1.980(3)81.3(1)
POHHOL [86]2.089(3)
2.097(3)
1.998(4)
1.993(3)
81.3(1)
81.5(1)
MIXNAL [83]2.070(3)1.998(4)82.0(1)
MIXMUE [83]2.075(2)1.993(3)81.61(8)
KACMUZ [87]2.095(5)1.970(4)80.8(2)
KACNAG [87]2.088(3)1.994(4)81.3(1)
GADLEE [89]2.084(3)
2.068(3)
1.985(4)
1.980(4)
80.8(1)
81.6(1)
QEZFEJ [92]2.087(3)1.969(3)81.4(1)
[Pd(2PPY*)L1L2] and [Pd(2PPY*)(LL)] (2PPY* = a-R1-2-(b-R2-phenyl)pyridine* ≠ 2ppy*, a = 3–6, b = 2–5)
MAWSOW [121]2.103(2)2.001(2)80.99(8)
GAJNAH [64]2.089(2)2.013(3)80.9(1)
KENTEE [124]2.047(2)2.013(3)80.82(9)
QEZFIN [92]2.082(3)
2.095(3)
2.013(4)
2.002(4)
81.8(1)
81.3(1)
SOFCAT [125]2.006(7)
2.031(5)
1.959(7)
1.96(1)
81.5(3)
82.5(3)
SOFBEW [125]2.071(2)1.990(2)81.28(8)
SOFBOG [125]2.083(3)1.985(3)80.9(1)
SOFBIA [125]2.071(2)1.993(3)81.8(1)
WOMREY [17]2.066(2)2.009(2)81.26(9)
WOMRAU [17]2.063(4)2.001(4)81.3(2)
[Pd(2ArPY*)L1L2] and [Pd(2ArPY*)(LL)] (2ArPY* ≠ 2PPY*, 2ppy*)
TUMLAO [29]2.025(4)1.983(6)88.8(2)
FESCEO [74]2.106(2)2.003(3)89.43(8)
WOSYEI [33]2.029(5)1.987(7)87.5(2)
IJEYED [81]2.088(2)1.996(3)88.8(1)
MUBQOR [82]2.077(1)1.985(1)90.05(6)
KOXWAX [140]2.017(2)1.992(3)81.0(1)
ZABFEN [141]2.041(4)1.982(6)81.7(2)
[Pd(ArPY#*)L1L2] and [Pd(ArPY#*)(LL)] (ArPY#* ≠ 2ArPY*, 2PPY*, 2ppy*)
PORNIU [67]2.143(3)1.987(3)81.0(1)
REJHIZ [9]2.076(3)2.025(4)82.0(1)
VIYXUX [16]2.079(3)2.023(3)81.9(1)
POKSIS [13]2.037(2)2.026(4)82.0(1)
POKSIS 01 [30]2.039(3)2.026(5)82.2(2)
POKSOY [13]2.037(1)2.016(1)82.06(5)
ASEHEM [31]2.021(3)1.993(3)82.6(1)
ANOJOD [45]2.049(2)1.990(1)82.50(7)
DAQNEQ [39]2.042(5)1.995(6)82.5(2)
FIBRIV [152]2.040(2)1.991(2)82.65(7)
FULXAM [40]2.032(2)1.977(2)82.89(7)
NIJXIR [152]2.044(2)1.986(2)82.34(7)
TAXHAE [153]2.136(4)
2.133(3)
2.141(3)
2.146(4)
2.007(4)
2.007(4)
1.995(4)
2.001(4)
81.6(1)
81.6(1)
81.4(1)
81.3(1)
NIJXEN [152]2.040(3)1.985(3)82.0(1)
VUYKAE [158]2.137(1)2.043(1)80.86(5)
FULXEQ [40]2.070(2)2.013(3)82.57(9)
FELQET [69]2.098(3)2.022(4)82.1(1)
EQIROL [73]2.081(4)2.009(5)82.1(2)
EQIRUR [73]2.096(2)2.018(3)82.0(1)
EQIREB [73]2.081(4)2.002(4)82.1(2)
CALWIZ [162]2.063(3)1.983(5)82.6(2)
VAHTAD [163]2.127(5)2.003(6)81.3(2)
VAHSUW [163]2.122(2)2.002(2)82.1(1)
HEXTIR [164]2.097(1)2.006(1)82.37(5)
LUXYUZ [165]2.085(3)2.000(3)82.3(1)
ZIGPEN [166]2.085(4)1.988(5)82.1(2)
QEZFOT [92]2.090(4)1.976(4)83.1(2)
CAMSAM [156]2.071(2)1.975(2)81.61(9)
CAMTAN [156]2.026(3)2.010(4)82.0(1)
Table 12. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in dimeric Pd(II)-(2-arylpyridine*) compounds.
Table 12. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in dimeric Pd(II)-(2-arylpyridine*) compounds.
X-ray (CCDC)Pd-NPd-CN-Pd-CElement Trans to NElement Trans to C
[Pd(2ppy*)(µ-X)]2, [Pd(2ppy*)(µ-XX)0.5]2 and [Pd(2ppy*)Y(µ-X)0.5]2
SOHDUO [95]2.006(4)
2.013(5)
1.973(5)
1.977(4)
81.2(2)
80.9(2)
SOHDUO 01 [96]2.011(5)
2.006(6)
1.974(6)
1.972(5)
80.9(2)
81.3(2)
SOHDUO 02 [19]2.0134(9)
2.015(1)
1.987(1)
1.987(1)
81.22(4)
81.25(4)
SOHDUO 03 [97]2.005(2)2.005(3)81.2(1)
KEXXIV [98]2.09(1)
2.09(1)
2.07(2)
2.08(1)
2.07(1)
2.08(1)
77.0(5)
77.2(6)
77.4(6)
KEXXIV 01 [99]2.08(1)
2.04(1)
2.08(1)
2.02(1)
1.99(1)
2.05(1)
78.6(5)
80.2(5)
77.7(5)
XEMQIQ [107]2.002(3)
2.011(3)
1.969(3)
1.966(3)
81.4(1)
81.6(1)
XEMQIQ 01 [108]2.006(2)
1.961(2)
1.960(3)
2.002(3)
81.7(1)
81.3(1)
XEMQIQ 02 [109]2.009(2)
2.005(2)
1.969(2)
1.966(2)
81.69(8)
81.54(8)
XEMQIQ 03 [67]1.962(4)
1.965(4)
1.997(4)
1.998(4)
81.3(1)
81.1(2)
XEMQIQ 04 [19]2.0052(6)
2.0116(7)
1.9616(8)
1.9566(7)
81.68(3)
81.84(3)
XEMQIQ 05 [110]2.002(3)
2.011(2)
1.961(3)
1.968(3)
81.7(1)
81.5(1)
COJBEJ [109]1.990(7)
1.983(8)
1.978(8)
1.989(6)
80.6(3)
81.0(3)
MAHNUG [19]2.009(3)
1.993(3)
1.998(4)
2.005(2)
2.001(4)
2.008(3)
1.958(3)
1.963(3)
1.976(4)
1.960(4)
1.960(3)
1.968(4)
81.0(1)
81.3(1)
81.6(1)
81.2(2)
81.5(1)
81.3(1)
XOTVIL [66]2.023(3)
2.028(3)
1.964(5)
1.970(3)
81.6(2)
81.5(1)
DAQMUF [39]2.018(3)
2.013(3)
1.963(4)
1.963(4)
82.0(1)
82.0(1)
EKEDUW [53]2.056(7)
2.036(5)
1.972(8)
1.976(5)
81.9(3)
81.2(2)
HEYDOF [111]2.008(4)
1.998(6)
2.004(5)
2.002(8)
81.0(2)
81.1(2)
OGONOO [112]2.03(1)
2.027(7)
2.03(1)
2.03(1)
1.97(1)
1.97(1)
1.973(8)
1.970(7)
81.5(4)
81.5(4)
81.4(3)
81.5(4)
OGONUU [112]2.027(4)
2.007(4)
2.026(4)
2.025(4)
1.998(5)
2.004(4)
1.985(5)
1.990(4)
81.6(2)
81.2(2)
81.9(2)
81.8(2)
OGOPAC [112]2.025(3)
2.026(3)
2.026(3)
2.007(4)
1.985(4)
1.990(4)
1.997(4)
2.005(3)
81.9(1)
81.8(1)
81.5(1)
81.3(1)
JUCFEU [113]2.021(5)
2.024(6)
1.957(7)
1.962(9)
81.2(3)
81.3(3)
SEMDIY [68]2.06(1)2.05(1)80.9(4)
BUFYOS [116]2.11(1)
2.109(9)
1.985(9)
2.001(8)
81.1(4)
81.7(4)
SIDBUE [117]2.102(2)
2.103(2)
1.998(2)
1.996(2)
81.54(8)
81.45(7)
IGOWIL [118]1.999(3)2.091(4)80.7(1)
MIXMEO [83]2.074(5)
2.058(5)
1.987(6)
1.993(6)
82.2(2)
81.8(2)
[Pd(2PPY*)(µ-X)]2, [Pd(2PPY*)(µ-XX)0.5]2 and [Pd(2PPY*)Y(µ-X)0.5]2
(2PPY* = a-R1-2-(b-R2-phenyl)pyridine* ≠ 2ppy*, a = 3–6, b = 2–5)
MAHPAO [19]2.016(2)1.956(2)81.84(8)
MAHPOC [19]1.974(8)
1.999(6)
2.028(6)
1.982(7)
1.924(7)
1.924(7)
1.892(8)
1.946(5)
79.6(3)
81.1(3)
80.3(3)
81.0(3)
GAJNOV [64]2.062(4)
2.056(5)
1.991(6)
1.990(4)
81.5(2)
81.5(2)
WOMSAV [17]2.009(4)
2.017(4)
1.948(5)
1.959(7)
81.6(2)
81.8(2)
WOMQUN [17]2.015(3)
2.014(3)
1.955(4)
1.970(4)
81.7(1)
81.9(1)
[Pd(2ArPY*)(µ-X)]2, [Pd(2ArPY*)(µ-XX)0.5]2 and [Pd(2ArPY*)Y(µ-X)0.5]2
(2ArPY* ≠ 2PPY*, 2ppy*)
YAPXEU [136]2.031(3)1.983(3)88.2(1)
NOGKUQ [136,142]1.966(7)
1.991(6)
1.963(6)
1.983(6)
2.028(6)
1.993(6)
2.025(6)
1.980(4)
88.7(3)
88.1(2)
89.4(2)
87.3(2)
UMAPEF [70]2.039(2)
2.021(3)
1.972(3)
1.971(3)
91.0(1)
89.6(1)
ASOGAR [143] 1.91(2)
1.90(2)
2.14(2)
2.08(3)
87.6(7)
86.3(8)
ASOGAR 01 [144]1.988(4)
2.000(4)
1.992(4)
1.981(5)
88.5(2)
88.8(2)
[Pd(ArPY#*)(µ-X)]2, [Pd(ArPY#*)(µ-XX)0.5]2 and [Pd(ArPY#*)Y(µ-X)0.5]2
(ArPY#* ≠ 2ArPY*, 2PPY*, 2ppy*)
COHNET [99]2.066(4)2.058(6)81.4(2)
YULCUE [45,102,103,148,169]1.999
2.001
1.999
2.001
82.5
83.1
WEFFIY [148,169]2.021(4)
2.028(4)
2.033(3)
2.030(4)
2.021(4)
2.031(4)
2.027(3)
2.023(4)
2.024(4)
2.022(4)
2.032(3)
2.034(4)
1.972(4)
1.948(4)
1.977(4)
1.971(4)
1.989(4)
1.967(4)
1.965(4)
1.970(4)
1.972(4)
1.973(4)
1.967(4)
1.975(4)
82.6(2)
82.7(2)
82.7(2)
82.6(2)
82.7(2)
82.9(2)
82.5(2)
82.8(2)
82.5(2)
82.8(2)
82.5(2)
82.8(2)
PEMVEK [148]1.999(4)
2.007(3)
1.999(3)
1.987(4)
82.2(1)
82.3(1)
EBOGUA [149]2.024(2)
2.022(2)
2.027(2)
2.021(2)
1.968(2)
1.967(2)
1.964(2)
1.969(2)
82.70(9)
82.86(8)
82.62(8)
82.54(9)
ANOJIX [45]2.029(2)
2.033(2)
1.967(3)
1.973(2)
82.68(9)
82.82(9)
ASEHAI [31]2.073(4)
2.066(3)
1.997(4)
2.006(4)
82.6(1)
82.1(1)
VUYKEI [158]2.054(1)
2.046(1)
1.988(1)
1.991(1)
82.04(6)
82.32(6)
VUYHAB [158]2.044(4)
2.055(4)
1.989(6)
1.995(4)
82.3(2)
82.5(2)
VUYGUU [158]2.065(5)
2.058(4)
1.992(4)
1.993(6)
81.9(2)
82.7(2)
VUYGOO [158]2.039(5)
2.063(7)
1.999(8)
1.985(6)
82.1(3)
82.2(3)
EBOHEL [159]2.129(4)
2.122(4)
2.004(6)
2.004(6)
82.7(2)
82.6(2)
Table 13. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in dimeric Pd(III)-(2-arylpyridine*) compounds.
Table 13. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in dimeric Pd(III)-(2-arylpyridine*) compounds.
X-ray (CCDC)Pd-NPd-CN-Pd-CElement Trans to NElement Trans to C
[Pd(2-arylpyridine*)Y(µ-X)]2 and [Pd(2-arylpyridine*)Y(µ-XX)0.5]2
CUHQAY [44,45]2.002(3)
2.004(4)
2.003(4)
2.010(3)
1.989(4)
1.988(4)
1.978(4)
1.992(4)
81.8(1)
81.6(2)
81.9(2)
81.7(1)
PAHREX [167]2.004(4)
2.016(2)
1.990(2)
1.997(4)
82.8(1)
82.7(1)
YULDAL [102,103]2.017(3)1.999(3)82.9(1)
YULDIT [102,103]2.002(4)
2.009(5)
2.006(5)
1.988(5)
82.8(2)
82.2(2)
PIVGEI [168]2.027(5)
2.025(4)
1.981(5)
1.983(6)
82.8(2)
82.6(2)
Table 14. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in monomeric Pd(IV)-(2-arylpyridine*) compounds.
Table 14. Pd-N and Pd-C bond lengths [Å], as well as N-Pd-C bond angles [°] in monomeric Pd(IV)-(2-arylpyridine*) compounds.
X-ray (CCDC)Pd-NPd-CN-Pd-CElement Trans to NElement Trans to C
[Pd(2-arylpyridine*)2L1L2]
LUFQIN [38]2.0172.06881.05
ZUNYOY [48]2.150(1)
2.025(2)
2.002(2)
2.000(2)
80.54(7)
81.64(7)
LUFQOT [38]2.154(3)
2.033(3)
1.985(4)
2.004(2)
80.9(1)
80.8(1)
QAVCAS [37]2.137(3)
2.018(2)
2.013(2)
2.019(3)
80.92(9)
81.6(1)
PITZOI [170]2.145(4)
2.038(3)
2.021(4)
2.028(4)
81.0(1)
81.4(1)
[Pd(2-arylpyridine*)ABCD]
APADAX [123]2.034(3)2.018(3)82.3(1)
APACIE [123]2.099(6)2.064(7)87.3(3)
APACUQ [123]2.028(2)2.038(4)87.4(1)
APADEB [123]2.013(3)2.004(3)86.3(1)
OPOQAM [171]2.022(3)
2.042(3)
1.997(4)
2.005(4)
83.7(1)
83.3(2)
WEFFEU [148]2.025(4)
2.029(5)
2.000(5)
1.998(6)
83.0(2)
82.9(2)
JOHGOD [154,155]2.012(4)2.008(5)82.8(2)
CAMSIU [156]2.031(3)2.021(3)82.8(1)
OPETOU [157]2.028(4)2.025(5)82.6(2)
CAMSEQ [156]2.030(3)2.038(3)82.7(1)
LUXZAG [165]2.105(2)2.025(2)81.97(7)
Table 15. 15N chemical shifts (in respect to CH3NO2, in ppm—δ15N) and 15N coordination shifts (Δ15Ncoord) for [Pd(2ppy*)L1L2] compounds (L1, L2—monodentate ligands).
Table 15. 15N chemical shifts (in respect to CH3NO2, in ppm—δ15N) and 15N coordination shifts (Δ15Ncoord) for [Pd(2ppy*)L1L2] compounds (L1, L2—monodentate ligands).
L1L2CounterionNMR Solvent15N
Chemical Shift
15N
Coordination Shift
Cl (1)Cl (1)[Pd(2-phenylpyridine*) (dimethyl sulfoxide)2]+ (1)DMF-d7+DMSO-d6
(3:1, 243 K)
−145 [1]−73 (a)
dimethyl sulfoxide (1)dimethyl sulfoxide (1)[Pd(2-phenylpyridine*)
Cl2]− (1)
DMF-d7+DMSO-d6
(3:1, 243 K)
−141 [1]−69 (a)
µ-Cl (2)µ-Cl (2) DMF-d7
solid
−146 [1]
−147 [1]
−74 (a)
none
NH3Cl DMSO-d6−142.0 [6]−70.1 (b)
pyridineCl CDCl3−145.1 [6]−70.2 (c)
2-methylpyridineCl CDCl3−145.0 [6]−70.1 (c)
3-methylpyridineCl CDCl3−144.7 [6]−69.8 (c)
4-methylpyridineCl CDCl3−144.7 [6]−69.8 (c)
2,3-dimethylpyridineCl CDCl3−144.2 [6]−69.3 (c)
2,4-dimethylpyridineCl CDCl3−144.3 [6]−69.4 (c)
2,6-dimethylpyridineCl CDCl3−143.6 [6]−68.7 (c)
3,5-dimethylpyridineCl CDCl3−143.8 [6]−68.9 (c)
2,4,6-trimethylpyridineCl CDCl3−143.5 [6]−68.6 (c)
(1) This compound is an ionic pair [Pd(2ppy*)Cl2] [Pd(2ppy*)(dimethyl sulfoxide)2]+, thus it appears in two distinct rows of Table 15. (2) This is [Pd(2ppy*)(µ-Cl)]2 dimer. (a) Vs. 2-phenylpyridine in DMF-d7: −72 ppm [1]. (b) Vs. 2-phenylpyridine in DMSO-d6: −71.9 ppm [6,172]. (c) Vs. 2-phenylpyridine in CDCl3: −74.9 ppm [6,172].
Table 16. Summary of biological activity studies for the reviewed Pd(II) compounds.
Table 16. Summary of biological activity studies for the reviewed Pd(II) compounds.
ReferenceGeneral FormulaAuxiliary Ligand(s)
(If Other Than Halides)
Cancer CellsNon-Cancerous Cells
[5][PdII(2-phenylpyridine*)LACl]




[PdII(2-phenylpyridine*)LBX]
(X = Cl, Br, I)
LA = NH3, methylamine, tert-butylamine, pyridine-d5, 2,6- and
3,5-dimethylpyridine,
trimethylphosphite, triphenylphosphine
LB = pyridine-d5
murine leukemiaL1210, P388
[18][PdII(2-phenylpyridine*)(LL)]+LL = ethane-1,2- and propane-1,3-diamine, cis- and trans-cyclohexane-1,2-diaminemurine leukemia
L1210
[51][PdII(ArPY#*)(LL)]+
ArPY# = 2-phenylpyridine, 2-phenylquinoline, 7,8-benzoquinoline
LL = 2,2′-bipyridine, 1,10-phenanthrolinecervix HeLa
[94][PdII(2-phenylpyridine*)(LL)]+LL = bis(1-n-hexyl-1H-imidazol-2-ylidene-3-yl)methanemurine colorectum CT26
[110][PdII(2-phenylpyridine*)(µ-X)]2X = acetatebladder T-24;
cervix HeLa;
lung NCI-H460;
ovary SK-OV-3
hepatocytes HL-7702
[113][PdII(2-phenylpyridine*)(LL)]LL = 5,5-diethyl-1,2,5,6-tetrahydropyrimidin-4-olatebreast MCF-7; colon HT-29;
prostate DU-145, PNT-1A
[152][PdII(7,8-benzoquinoline*)LCl] (1)
[PdII(7,8-benzoquinoline*)(µ-Cl)]2
L = 2-aminopyridine, 2-amino-3-methylpyridine, 1H-imidazole, 2-aminobenzothiazole (1)colon HCT116;
ovary A2780
(1) Besides compounds tested in respect to their anti-tumour activity, anti-bacterial properties (against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) were also studied for nine [PdII(7,8-benzoquinoline*)LCl] neutral molecules (L = 2-methylpyridine, 3-methylpyridine, 2-aminopyridine, 2-amino-3-methylpyridine, 2-amino-5-chloropyridine, 1H-imidazole, 2-aminothiazole, 2-aminobenzimidazole, 2-aminobenzothiazole) and one [PdII(7,8-benzoquinoline*)(LL)]+ cation (LL = 2-aminomethylpyridine) [152].
Table 17. Summary of catalytic activity studies for the reviewed Pd(II), Pd(III), and Pd(IV) compounds.
Table 17. Summary of catalytic activity studies for the reviewed Pd(II), Pd(III), and Pd(IV) compounds.
ReferenceGeneral FormulaAuxiliary Ligand(s)
(If Other Than Halides)
ReactantsMain Product(s)
[15][PdII(2-phenylpyridine*)LCl]L = dimethyl sulfoxide, triphenylphosphine(hetero)aryl chlorides/bromides/iodides, phenylboronic acidphenyl(hetero)arenes (a)
[39]PdII(ArPY#*)(µ-X)]2
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
X = saccharinate4-(4-methylphenylsulfonyl)coumarine, (1) arylboronic acid4-arylcoumarine (1) (a)
[44][PdIII(2-phenylpyridine*)X(µ-X)]2
[PdIV(2-phenylpyridine*)2L 2]
X, L = acetate2-phenylpyridine, (diacetoxyiodo)benzene2-(2-acetoxyphenyl)pyridine and/or
2,6-bis(2-acetoxyphenyl)pyridine
[45]1) [PdIII(2-phenylpyridine*)X(µ-X)]2
[PdIV(2-phenylpyridine*)2L 2]


2) [PdII(ArPY#*)(µ-X)]2
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
1) X, L = acetate




2) X = succinimidate
1) 2-phenylpyridine, (diacetoxyiodo)benzene



2) 2-phenylpyridine or 7,8-benzoquinoline, N-chlorosuccinimide
1) 2-(2-acetoxyphenyl)pyridine and/or
2,6-bis(2-acetoxyphenyl)pyridine
2) 2-(2-chlorophenyl)pyridine or 10-chloro-7,8-benzoquinoline
[62][PdII(2-phenylpyridine*)(LL)]LL = 1,3-dimethyl-2,4-dione-5-(2,5-dimethylphenyliminomethyl)-,
1,3-dimethyl-2,4-dione-5-(2,6-diisopropylphenyliminomethyl)-
and
1,3-dimethyl-2,4-dione-5-(2-methylsulfanylphenyliminomethyl)-1,2,3,4-tetrahydropyrimidin-6-olate
aryl bromides, phenylboronic acidphenylarenes (a)
[67][PdII(2-phenylpyridine*)LACl]
[PdII(ArPY#*)LALB]
ArPY# = 2-phenylpyridine, 2-phenylquinoline
LA = triphenylphosphine;
LB = 4-methylphenylsulfonate
2-bromo-6-methoxynaphthalene or 4-bromoisobutylbenzene or 3-bromobenzophenone,
ethylene
2-vinyl-6-methoxynaphthalene or 4-vinylisobutylbenzene or 3-vinylbenzophenone(b)
[68][PdII(2-phenylpyridine*)(µ-X)]2X = O,O’-dimethylthiophosphatemethylparathion,(2) H2O4-nitrophenol
[69][PdII(ArPY#*)L1L2]
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
[PdII(7,8-benzoquinoline*)(µ-X)]2
L1 = triphenylphosphine, tris(4-fluorophenyl)phosphine, tris(4-methoxyphenyl)phosphine;
L2, X = succinimidate, maleimidate, phthalimidate
1) aryl bromides, phenylboronic acid
2) 4-acetylphenyl bromide, phenylacetylene
1) phenylarenes (a)

2) 4-acetylphenylethynylbenzene (c)
[74][PdII(ArPY#*)(LL)]
ArPY# = 2-phenylpyridine, 2-benzylpyridine, 7,8-benzoquinoline
LL = 2-diphenylphosphinobenzoate(hetero)aryl chlorides/bromides, phenylboronic acid or 4-methylphenylboronic acidphenyl(hetero)arenes of 4-methylphenyl(hetero)arenes (a)
[81][PdII(2ArPY*)L1L2]
2ArPY = 2-phenylpyridine, 2-benzoylpyridine
L1 = 1,3,5-triaza-7-phosphadamantane;
L2 = phthalimidate, saccharinate
5-iodo-2′-deoxyuridine, benzofuran-2-boronic acid5-(benzofuran-2-yl)--2′-deoxyuridine (a)
[82][PdII(2ArPY*)L1L2]
2ArPY = 2-phenylpyridine, 2-benzoylpyridine
L1 = 1-methyl-3-n-butylimidazol-2-ylidene; L2 = Cl, Br, I, saccharinate9-bromophenanthrene, (hetero)arylboronic acids9-(hetero)arylphenanthrenes
[83][PdII(2-phenylpyridine)LACl]







[PdII(2-phenylpyridine)LBBr]



[PdII(2-phenylpyridine)LCI]



[PdII(2-phenylpyridine)(µ-X)]2
LA = 1-methyl- and 1-phenyl-3-(2-carboxyethyl)imidazol-2-ylidene
as well as
1-methyl and 1-phenyl-3-(2-benzoxycarbonylethyl)imidazol-2-ylidene
LB = 1-methyl- and 1-phenyl-3-(2-ethoxycarbonylethyl)imidazol-2-ylidene;
LC = 1-methyl- and 1-phenyl-3-(2-methoxycarbonylethyl)imidazol-2-ylidene;
X = 1-methyl- and 1-phenyl-3-(2-carboxylatoethyl)imidazol-2-ylidene
mesitylene and its derivatives, ethyl propiolate or phenylacetylenevarious alkenyl derivatives of mesitylene and its derivatives
[84][PdII(2-phenylpyridine*)LBr]L = 1-methyl-3-(2,4,6-trimethylbenzyl)-,
1-methyl-3-(2,3,5,6-tetramethylbenzyl)- and
1-methyl-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylidene
aryl bromides, phenylboronic acidphenylarenes (a)
[85][PdII(2-phenylpyridine*)LBr]L = 1-n-butyl-3-(2,4,6-trimethylbenzyl)-,
1-n-butyl-3-(2,3,5,6-tetramethylbenzyl)-
and 1-n-butyl-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylidene
aryl bromides, phenylboronic acidphenylarenes (a)
[86][PdII(2-phenylpyridine*)LBr]L = 1-allyl-3-(2,4,6-trimethylbenzyl)-, 1-allyl-3-(2,3,5,6-tetramethylbenzyl)- and 1-allyl-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylidenearyl bromides, phenylboronic acidphenylarenes (a)
[87][PdII(2-phenylpyridine*)LCl]L = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, 1,3-bis(2,4,6-trimethylphenyl)-4,5-dicyanoimidazol-2-ylidenearyl chlorides/bromides,
n-butyl acrylate
n-butyl arylacrylates (d)
[88][PdII(2-phenylpyridine*)LBr]L = 1-(2,4,6-trimethylphenyl)-3-(2,4,6-trimethylbenzyl)-, 1-(2,4,6-trimethylphenyl)-3-(2,3,5,6-tetramethylbenzyl)- and 1-(2,4,6-trimethylphenyl)-3-(2,3,4,5,6-pentamethylbenzyl)imidazol-2-ylidenearyl chlorides/bromides, phenylboronic acidphenylarenes (a)
[89][PdII(2-phenylpyridine*)LCl]L = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene1) N-(4-chlorophenyl)pyrrole, 3-methoxyphenylboronic acid

2) 4-methylphenylmagnesium bromide, 4-methoxychlorobenzene
3) thiophen-2-ylmagnesium bromide, 2,6-dimethylchlorobenzene
4) 4-methylphenylzinc chloride/bromide, 4-methoxybromobenzene
5) n-butylzinc bromide, (3-bromo-n-propyl)benzene
1) N-(4-(3-methoxyphenyl)phenyl)pyrrole (a)
2) 4-methyl-4′-methoxy-1,1′-biphenyl (e)

3) 2-(2,6-dimethylphenyl)thiophene (e)
4) 4-methyl-4′-methoxy-1,1′-biphenyl (f)

5) various alkylbenzene derivatives (f)
[93][PdII(2-phenylpyridine*)LCl]L = 1-(2-methoxyethyl)-, 1-(2,4,6-trimethylbenzyl)-, 1-(2,3,5,6-tetramethylbenzyl)- and 1-(2,3,4,5,6-pentamethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)benzimidazol-2-ylidene
as well as
1-(2-methoxyethyl)-, 1-(2,4,6-trimethylbenzyl)-, 1-(2,3,5,6-tetramethylbenzyl)- and 1-(2,3,4,5,6-pentamethylbenzyl)-3-(((+)-2-methyl-5-isopropylcyclohexyl)oxymethyl)-5,6-dimethylbenzimidazol-2-ylidene
1) 4-methylphenyl or 4-methylcarbonylphenyl chloride, phenylboronic acid2) phenyl or 4-methylcarbonylphenyl bromide, styrene1) 4-methyl- or 4-methylcarbonyl-1,1′-biphenyl (a)
2) 1,2-diphenylethene or 1-phenyl-2-(4- methylcarbonylphenyl)ethene (b)
[102][PdII(7,8-benzoquinoline*)(µ-X)]2
[PdII(7,8-benzoquinoline*)(µ-XX)0.5]2
[PdIII(7,8-benzoquinoline*)Cl(µ-X)]2
X = acetate;
XX = benzene-1,3-bis(2,2-dimethylpropionate)
7,8-benzoquinoline,
(dichloroiodo)benzene or N-chlorosuccinimide
10-chloro-7,8-benzoquinoline
[124][PdII(2-(4-methylphenyl)pyridine*)L1L2 ]L1 = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; L2 = N34-acetylphenyl chloride/bromide, phenylboronic acid4-acetyl-1,1′-biphenyl (a)
[125][PdII(2-(4-bromophenyl)pyridine*)LCl]L = 1,3-bis(4-methylphenyl)-
1,3-bis(2,4,6-trimethylphenyl)- and 1,3-bis(4-methoxyphenyl)imidazol-2-ylidene
4-hydroxymethylphenyl chloride/bromide, phenylboronic acid4-hydroxymethyl-1,1′-biphenyl and/or
4-formyl-1,1′-biphenyl (a)
[160][PdII(7,8-benzoquinoline*)(LL)]+LL = 1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-chlorobenzoyl)-,
1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-bromobenzoyl)-,
1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-methoxybenzoyl)- and
1-((diphenylphosphinomethyl)diphenylphosphino)-1-(4-nitrobenzoyl)methyl
(hetero)aryl chlorides/bromides/iodides, phenylboronic acidphenyl(hetero)arenes (a)
[165][PdII(7,8-benzoquinoline*)(LL)]LL = 1-isopropyl-3-(2-oxy-2-methylpropyl)imidazol-2-ylidene2-phenylpyridine,
3-methyl-2-phenylpyridine or
7,8-benzoquinoline,
N-bromosuccinimide
2-(2-bromophenyl)pyridine,
3-methyl-2-(2-bromophenyl)pyridine or 10-bromo-7,8-benzoquinoline
[166][PdII(7,8-benzoquinoline*)LCl]L = 1,3-bis(2,4,6-trimethylphenyl)-
and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
1) aryl chlorides, primary/secondary amines
2) (hetero)aryl chlorides, aryl ethyl ketones
1) secondary/tertiary arylamines
2) aryl 2-(1-((hetero)aryl)ethylketones
(1) Coumarin is the common name for 2H-1-benzopyran-2-one. (2) Methylparathion is the common name for dimethoxy-(4-nitrophenoxy)-sulfanylidene-λ5-phosphane. (a) So-called Suzuki–Miyaura cross-coupling. (b) So-called Heck cross-coupling. (c) So-called Sonogashira cross-coupling. (d) So-called Mizoroki-Heck cross-coupling. (e) So-called Kumada–Tamao–Corriu cross-coupling. (f) So-called Negishi cross-coupling.
Table 18. Summary of luminescence studies for the reviewed Pd(II) compounds.
Table 18. Summary of luminescence studies for the reviewed Pd(II) compounds.
ReferenceGeneral FormulaAuxiliary Ligand(s)
(If Other Than Halides)
LifetimeMaximal Quantum Yield
[8][PdII(2-phenylpyridine*)L2]L = CN>10 µs40%
[9][PdII(ArPY#*)L2]
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
L = CN>10 µsnot given
[12][PdII(7,8-benzoquinoline*)(LL)]LL = n-pentane-2,4-dionate<10 µs<40%
[19]1) [PdII(2-phenylpyridine*)(LL)]+
2) [PdII(2-phenylpyridine*)(µ-Cl)]2
3) [PdII(2PPY*)(µ-X)]2
2PPY = 2-phenylpyridine, 2-(4-methylphenyl)pyridine
1) LL = ethane-1,2-diamine
2) none
3) X = acetate, trifluoroacetate
1) >10 µs
2) >10 µs
3) >10 µs
1) not given
2) not given
3) 80%
[23][PdII(ArPY#*)L2]+
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
L = acetonitrile<10 µsnot given
[30][PdII(ArPY#*)(LL)]
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
LL = 2-(phenyliminomethyl)-, 2-(4-chlorophenyliminomethyl)- and 2-(naphth-1-yliminomethyl)phenolate<10 µs1%
[31]1) [PdII(ArPY#*)(LL)]

2) [PdII(ArPY#*)(µ-X)]2
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
1) LL = 2-aminobenzenethiolate, 2-formylpyrrolate
2) X = pyridin-2-thiolate, pyrimidine-2-thiolate, 1-methylimidazol-2-thiolate, benzimidazol-2-thiolate
1) <10 µs

2) <10 µs
1) 1%

2) 3%
[39]1) [PdII(ArPY#*)L1L2]

2) [PdII(ArPY#*)(µ-X)]2
ArPY# = 2-phenylpyridine, 7,8-benzoquinoline
1) L1 = pyridine, quinoline, acridine; L2 = saccharinate
2) X = saccharinate
1) <10 µs or >10 µs

2) >10 µs
1%

1%
[51][PdII(ArPY#*)(LL)+
ArPY# = 2-phenylpyridine, 2-phenylquinoline, 7,8-benzoquinoline
LL = 2,2′-bipyridine, 1,10-phenanthroline<10 µs or >10 µsnot given
[52][PdII(2-phenylpyridine*)(LL)]+L = 1,10-phenanthroline, dipyrido- and 6,7-dicyanodipyrido[f,h]quinoxaline, dipyrido[a,c]phenazine>10 µs or not givennot given
[54][PdII(2-phenylpyridine*)(LL)]LL = quinolin-8-olate; 5-formyl-, 5-(n-dodecylaminomethyl)-,
5-(n-dodecyliminomethyl)- and 5-(n-dodecanoylamide)quinolin-8-olate
not given 1%
[57]1) [PdII(2-phenylpyridine*)(LL)]+

2) [PdII(2-phenylpyridine*)(µ-XX)0.5]2
1) LL = 2,3-bis(pyrid-2-yl)pyrazine, 6,7-dimethyl-2,3-bis(pyrid-2-yl)quinoxaline2) XX = 2,2′,3,3′-tetra(pyrid-2-yl)-6,6′-biquinoxaline1) >10 µs

2) >10 µs
not given

not given
[59][PdII(2-phenylpyridine*)(LL)]LL = 5-(2,4,6-trimethylphenyl)- and 5-(4-cyanophenyl)dipyrrinate<10 µsnot given
[125][PdII(2-(4-bromophenyl)pyridine*)LCl]L = 1,3-bis(4-methylphenyl)-,
1,3-bis(2,4,6-trimethylphenyl)- and 1,3-bis(4-methoxyphenyl)imidazol-2-ylidene
not given4%
[128][PdII(ArPY#*)(µ-X)]2
ArPY# = 2-(4-methylphenyl)pyridine, 7,8-benzoquinoline
X = pyridine-2-thiolate>10 µsnot given
[133][PdII(2-benzylpyridine*)(LL)]+LL = 2,2′-bipyridine, 1,10-phenanthroline>10 µsnot given
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pazderski, L.; Abramov, P.A. Pd(II), Pd(III) and Pd(IV) Cyclometallated Compounds with 2-Arylpyridines and Their Derivatives or Analogues: 44 Years (1980–2023) of NMR and Single Crystal X-ray Studies. Crystals 2023, 13, 1482. https://doi.org/10.3390/cryst13101482

AMA Style

Pazderski L, Abramov PA. Pd(II), Pd(III) and Pd(IV) Cyclometallated Compounds with 2-Arylpyridines and Their Derivatives or Analogues: 44 Years (1980–2023) of NMR and Single Crystal X-ray Studies. Crystals. 2023; 13(10):1482. https://doi.org/10.3390/cryst13101482

Chicago/Turabian Style

Pazderski, Leszek, and Pavel A. Abramov. 2023. "Pd(II), Pd(III) and Pd(IV) Cyclometallated Compounds with 2-Arylpyridines and Their Derivatives or Analogues: 44 Years (1980–2023) of NMR and Single Crystal X-ray Studies" Crystals 13, no. 10: 1482. https://doi.org/10.3390/cryst13101482

APA Style

Pazderski, L., & Abramov, P. A. (2023). Pd(II), Pd(III) and Pd(IV) Cyclometallated Compounds with 2-Arylpyridines and Their Derivatives or Analogues: 44 Years (1980–2023) of NMR and Single Crystal X-ray Studies. Crystals, 13(10), 1482. https://doi.org/10.3390/cryst13101482

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop