One Pot Synthesis, Surface, and Magnetic Properties of Ni–NiO@C Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Extraction of Chemicals and Plant Material
2.2. Preparation Method
2.2.1. Preparation of Leaf Powder
2.2.2. Preparation of the Ni–NiO/C Composites
2.3. Techniques
3. Results
3.1. Structural Analysis
3.2. FTIR Analysis
3.3. Raman Analysis
3.4. Morphology and Elemental Analyses
3.5. Surface Properties
3.6. Magnetic Properties
4. Discussion
- (i)
- The dry olive leaf powder acts as a biomaterial. Due to the presence of hydroxyl groups (OH) found in the phenols present in dry leaves, it holds and traps the bulk of nickel ions produced by the breakdown of nickel nitrate (Equation (4)) with the development of an organic–inorganic complex.
- (ii)
- The reduction of metallic salt (nickel nitrate) can be achieved by bioreduction-based biomolecules such as alkaloids, flavonoids, saponins, steroids, tannins, and other nutritional compounds [36].
- (iii)
- The reduction, stabilization, and prevention of the oxidation of Ni nanoparticles are realized through carbon (Equation (5)), which is a protective agent of Ni, with the liberation of carbon dioxide (Equation (6)).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deraz, N.M. Incandescent combustion synthesis of nanomagnetic Ni/NiO composites. Sci. Sinter. 2021, 53, 155–167. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Abd-Elkader, O.H.; Al-Kadhi, N.S.; Deraz, N.M. Effect of the Glycine Treatment on Synthesis and Physicochemical Characteristics of Nanosized Ni-Mn Mixed Oxides. Crystals 2021, 11, 487. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Deraz, N.M.; Abd-Elkader, O.H. Magnetic and characterization studies of CoO/Co3O4 nanocomposite. Processes 2021, 8, 844. [Google Scholar] [CrossRef]
- Deraz, N.M.; Abd-Elkader, O.H. Synthesis and Characterization of FeO/Ni0. 5Mn0. 5Fe2O4 Nano-Composite. Asian J. Chem. 2014, 26, 2141. [Google Scholar] [CrossRef]
- Suzuki, M.; Kudo, K.; Kojima, K.; Yasue, T.; Akutsu, N.; Diño, W.A.; Kasai, H.; Bauer, E.; Koshikawa, T. Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: I. Dynamic observations. J. Phys. Condens. Matter 2013, 25, 406001. [Google Scholar] [CrossRef]
- Motlagh, M.K.; Youzbashi, A.A.; Hashemzadeh, F.; Sabaghzadeh, L. Structural properties of nickel hydroxide/oxyhydroxide and oxide nanoparticles obtained by microwave-assisted oxidation technique. Powder Technol. 2013, 237, 562–568. [Google Scholar] [CrossRef]
- Yao, X.-J.; He, X.-M.; Song, X.-Y.; Ding, Q.; Li, Z.-W.; Zhong, W.; Au, C.-T.; Du, Y.-W. Enhanced exchange bias and coercivity arising from heterojunctions in Ni–NiO nanocomposites. Phys. Chem. Chem. Phys. 2014, 16, 6925–6930. [Google Scholar] [CrossRef]
- Nogués, J.; Langlais, V.; Sort, J.; Doppiu, S.; Suriñach, S.; Baró, M.D. Magnetic properties of Ni-NiO (ferromagnetic-antiferromagnetic) nanocomposites obtained from a partial mechanochemical reduction of NiO. J. Nanosci. Nanotechnol. 2008, 8, 2923–2928. [Google Scholar] [CrossRef]
- Yan, X.; Tian, L.; Chen, X. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 2015, 300, 336–343. [Google Scholar] [CrossRef]
- Song, S.; Yao, S.; Cao, J.; Di, L.; Wu, G.; Guan, N.; Li, L. Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Appl. Catal. B 2017, 217, 115–124. [Google Scholar] [CrossRef]
- Sun, X.; Si, W.; Liu, X.; Deng, J.; Xi, L.; Liu, L.; Yan, C.; Schmidt, O.G. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 2014, 9, 68–175. [Google Scholar] [CrossRef]
- Liu, T.; Pang, Y.; Xie, X.; Qi, W.; Wu, Y.; Kobayashi, S.; Zheng, J.; Li, X. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties. J. Alloy. Compd. 2016, 667, 287–296. [Google Scholar] [CrossRef]
- Xiang, W.; Liu, Y.; Yao, J.; Sun, R. Influence of annealing temperature on the microstructure and magnetic properties of Ni/NiO core-shell nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 97, 363–367. [Google Scholar] [CrossRef]
- Chaghouri, H.A.; Tuna, F.; Santhosh, P.N.; Thomas, P.J. Tiny Ni–NiO nanocrystals with exchange bias induced room temperature ferromagnetism. Solid State Commun. 2016, 230, 11–15. [Google Scholar] [CrossRef]
- Sharma, K.R.; Sharma, H.; Negi, N.S. Synthesis and Characterizations of Pure Ni and Ni-NiO Composite Ceramic Annealed at Varied Temperatures. In AIP Conference Proceedings, Bahal, India, 7–9 February 2019; AIP Publishing: Melville, NY, USA, 2019; Volume 2142, p. 1. [Google Scholar]
- Cabanas-Polo, S.; Bermejo, R.; Ferrari, B.; Sanchez-Herencia, A.J. Ni–NiO composites obtained by controlled oxidation of green compacts. Corros. Sci. 2012, 55, 172–179. [Google Scholar] [CrossRef]
- Ekeroth, S.; Ikeda, S.; Boyd, R.D.; Shimizu, T.; Helmersson, U. Growth of semi-coherent Ni and NiO dual-phase nanoparticles using hollow cathode sputtering. J. Nanoparticle Res. 2019, 21, 37. [Google Scholar] [CrossRef]
- Deraz, N.M. Magnetic behavior and physicochemical properties of Ni/NiO nanoparticles. Curr. Appl. Phys. 2012, 12, 928–934. [Google Scholar] [CrossRef]
- Madhumitha, G.; Reopen, S.M. Devastated crops: Multifunctional efficacy for the production of nanoparticles. J. Nanomater. 2013, 2013, 951858. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govinda, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley Publishing Co., Inc.: Boston, MA, USA, 1956. [Google Scholar]
- Kavaliauskas, Z.; Marcinauskas, L.; Valatkevicius, P. Formation and Characterization of Carbon and Nickel Oxide/Carbon Composites for Supercapacitors. Acta Phys. Pol. A 2011, 119, 253–255. [Google Scholar] [CrossRef]
- Ghaemi, F.; Abdullah, L.C.; Tahir, P. Core/shell structure of Ni/NiO encapsulated in carbon nanosphere coated with few-and multi-layered graphene: Synthesis, mechanism and application. Polymers 2016, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elkader, O.H.; Deraz, N.M.; Aleya, L. Rapid Bio-Assisted Synthesis and Magnetic Behavior of Zinc Oxide/Carbon Nanoparticles. Crystals 2023, 13, 1081. [Google Scholar] [CrossRef]
- Lewis, I.R.; Edwards, H. Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kwan, J.T.H.; Bonakdarpour, A.; Afonso, G.; Wilkinson, D.P. Bridging fundamental electrochemistry with applied fuel cell testing: A novel and economical rotating disk electrode tip for electrochemical assessment of catalyst-coated membranes. Electrochim. Acta 2017, 258, 208–219. [Google Scholar] [CrossRef]
- George, G.; Anandhan, S. Synthesis and characterisation of nickel oxide nanofibre webs with alcohol sensing characteristics. Rsc Adv. 2014, 4, 62009–62020. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Kuzmin, A.; Steins, I.; Grabis, J.; Sildos, I.; Pärs, M. Raman scattering in nanosized nickel oxide NiO. J. Phys. Conf. Ser. 2007, 93, 012039. [Google Scholar] [CrossRef]
- Feng, C.; Kou, X.; Chen, B.; Qian, G.; Sun, Y.; Lu, G. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sens. Actuators B Chem. 2017, 253, 584–591. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Kuzmin, A.; Sildos, I.; Puust, L.; Grabis, J. Magnon and phonon excitations in nanosized NiO. Latv. J. Phys. Tech. Sci. 2019, 56, 61–72. [Google Scholar]
- Wu, X.; Xing, W.; Zhang, L.; Zhuo, S.; Zhou, J.; Wang, G.; Qiao, S. Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. Powder Technol. 2012, 224, 162–167. [Google Scholar] [CrossRef]
- Dzidziguri, E.L.; Sidorova, E.N.; Yahiyaeva, J.E.; Ozherelkov, D.Y.; Gromov, A.A.; Nalivaiko, A.Y. Low-temperature oxidation of metal nanoparticles obtained by chemical dispersion. Micro Nano Lett. 2020, 15, 461–464. [Google Scholar] [CrossRef]
- Chen, D.H.; Wu, S.H. Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chem. Mater. 2000, 12, 1354–1360. [Google Scholar] [CrossRef]
- Pajor-Swierzy, A.; Socha, R.; Pawłowski, R.; Warszynski, P.; Szczepanowicz, K. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films. Nanotechnology 2019, 30, 225301. [Google Scholar] [CrossRef] [PubMed]
- Sportelli, M.C.; Clemente, M.; Izzi, M.; Volpe, A.; Ancona, A.; Picca, R.A.; Palazzo, G.; Cio, N. Exceptionally stable silver nanoparticles synthesized by laser ablation in alcoholic organic solvent. Colloids Surf. A 2018, 559, 148–158. [Google Scholar] [CrossRef]
- Adelere, I.A.; Lateef, A.A. Novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes and pigments. Nanotechnol. Rev. 2016, 5, 567–587. [Google Scholar] [CrossRef]
- Jeon, Y.T.; Moon, J.Y.; Lee, G.H.; Park, J.; Chang, Y. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face centered cubic Ni nanoparticles. J. Phys. Chem. B 2006, 110, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, V.; Marceau, E.; Beaunier, P.; Che, M.; Train, C. Stabilization of hexagonal close-packed metallic nickel for alumina-supported systems prepared from Ni (II) glycinate. J. Solid State Chem. 2007, 180, 22–30. [Google Scholar] [CrossRef]
- Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W.J. Shape control of silver nanoparticles by stepwise citrate reduction. Phys. Chem. C 2009, 113, 6573–6576. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Q.; Liu, Z.; Libor, Z. Highly efficient size reduction of nanoparticles by the shock wave method. Funct. Mater. Lett. 2010, 3, 299–302. [Google Scholar] [CrossRef]
- Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Bhanja, K.; Mohan, S. Mathematical analysis of reduction of copper oxide pellets by hydrogen using the shrinking core model. Fusion Eng. Des. 2015, 100, 560–564. [Google Scholar] [CrossRef]
- Kar, P. A comparison of the pseudo-steady-state and shrinking-core model for the reduction of titanium dioxide to titanium. J. Solid State Electrochem. 2008, 12, 1611–1617. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Paz-Garcia, J.M.; Arhoun, B.; Cerrillo-Gonzalez, M.M.; Rodriguez-Maroto, J.M.; Vereda-Alonso, C.; Gomez-Lahoz, C. Chemical Reduction of Nitrate by Zero-Valent Iron: Shrinking-Core versus Surface Kinetics Models. Int. J. Environ. Res. Public Health 2020, 17, 1241. [Google Scholar] [CrossRef] [PubMed]
- Vilardi, G. Mathematical modelling of simultaneous nitrate and dissolved oxygen reduction by Cu-nZVI using a bi-component shrinking core model. Powder Technol. 2019, 343, 613–618. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Qihe, R.; Li, G. Magnetic crossover of NiO nanocrystals at room temperature. Appl. Phys. Lett. 2006, 89, 134102. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Ishikawa, K.; Li, Z.Q.; Kawazoe, Y.; Kasuya, A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 2000, 85, 3440. [Google Scholar] [CrossRef] [PubMed]
- Ayyub, P.; Palkar, V.R.; Chattopadhyay, S.; Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 1995, 51, 6135. [Google Scholar] [CrossRef] [PubMed]
- Pitike, K.C.; Marquez-Rossy, A.E.; Flores-Betancourt, A.; Chen, D.; Santosh, K.; Cooper, V.R.; Lara-Curzio, E. On the elastic anisotropy of the entropy-stabilized oxide (Mg, Co, Ni, Cu, Zn) O compound. J. Appl. Phys. 2020, 128, 015101. [Google Scholar] [CrossRef]
- Cabo, M.; Pellicer, E.; Rossinyol, E.; Estrader, M.; López-Ortega, A.; Nogués, J.; Castell, O.; Suriñach, S.; Baró, M.D. Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. J. Mater. Chem. 2010, 20, 7021–7028. [Google Scholar] [CrossRef]
- Kakazey, M.; Vlasova, M.; Vorobiev, Y.; Leon, I.; Gonzalez, M.C.; Urbiola, E.A.C. Processes of microstructural evolution during high-energy mechanical treatment of ZnO and black NiO powder mixture. Phys. B Condens. Matter 2014, 453, 116–122. [Google Scholar] [CrossRef]
- Bakeer, D.E.S.; Abou-Aly, A.I.; Mohammed, N.H.; Awad, R.; Hasebbo, M. Characterization and Magnetic properties of nanoferrite ZnFe2−xLaxO4 prepared by co-precipitation method. J. Supercond. Nov. Magn. 2017, 30, 893–902. [Google Scholar] [CrossRef]
- Stoner, E.C.; Wohlfarth, E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1984, 240, 599–642. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Huang, C.Y.; Yang, C.C.; Chan, T.S.; Cheng, C.L.; Ma, Y.R.; Wu, S.Y. Growth mechanism and magnon excitation in NiO nanowalls. Nanoscale Res. Lett. 2011, 6, 485. [Google Scholar] [CrossRef] [PubMed]
Parameters | Nickel Oxide | Nickel | ||
---|---|---|---|---|
S1 | S2 | S1 | S2 | |
d, nm | 37 | 41 | 32 | 35 |
a, nm | 0.4187 | 0.4180 | 0.3535 | 0.3534 |
V, nm3 | 7.340 | 7.301 | 4.417 | 4.412 |
Dx, g/cc | 6.757 | 6.794 | 8.823 | 8.834 |
δ, Lines/nm2 | 7.30 × 10−4 | 5.95 × 10−4 | 9.76 × 10−4 | 8.16 × 10−4 |
ε | 0.0026 | 0.00242 | 0.0030 | 0.0028 |
Parameters | SBET (m2/g) | Vm (cc/g) | Vp (cc/g) | ȓ (nm) | C-Constant |
---|---|---|---|---|---|
S1 | 4.3572 | 7.66 | 0.00397 | 0.4764 | 2.073 |
S2 | 14.259 | 3.276 | 0.0344 | 9.638 | 6.141 |
Parameters | Ms (emu/g) | Mr (emu/g) | Mr/Ms | Hc (Oe) | Ka (erg/cm3) |
---|---|---|---|---|---|
S1 | 4.8744 | 1.229 | 0.2521 | 55.203 | 6.1129 |
S2 | 8.648 | 1.290 | 0.1492 | 39.639 | 349.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Senani, G.M.; Al-Fawzan, F.F.; Alshabanat, M.; Abd-Elkader, O.H.; Nasrallah, M.; Nasrallah, M. One Pot Synthesis, Surface, and Magnetic Properties of Ni–NiO@C Nanocomposites. Crystals 2023, 13, 1497. https://doi.org/10.3390/cryst13101497
Al-Senani GM, Al-Fawzan FF, Alshabanat M, Abd-Elkader OH, Nasrallah M, Nasrallah M. One Pot Synthesis, Surface, and Magnetic Properties of Ni–NiO@C Nanocomposites. Crystals. 2023; 13(10):1497. https://doi.org/10.3390/cryst13101497
Chicago/Turabian StyleAl-Senani, Ghadah M., Foziah F. Al-Fawzan, Mashael Alshabanat, Omar H. Abd-Elkader, Mai Nasrallah, and Mohamed Nasrallah. 2023. "One Pot Synthesis, Surface, and Magnetic Properties of Ni–NiO@C Nanocomposites" Crystals 13, no. 10: 1497. https://doi.org/10.3390/cryst13101497
APA StyleAl-Senani, G. M., Al-Fawzan, F. F., Alshabanat, M., Abd-Elkader, O. H., Nasrallah, M., & Nasrallah, M. (2023). One Pot Synthesis, Surface, and Magnetic Properties of Ni–NiO@C Nanocomposites. Crystals, 13(10), 1497. https://doi.org/10.3390/cryst13101497