Effect of Nickel Addition on Solidification Microstructure and Tensile Properties of Cast 7075 Aluminum Alloy
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results
3.1. Microstructure
3.2. Mechanical Property
4. Discussion
4.1. Microstructure Characteristics of Studied Alloys
4.2. Effect of Ni Element on Solidification Behavior of Alloy
4.3. Effect of Nickel on Mechanical Properties of As-Cast 7075 Alloy
5. Conclusions
- (1)
- The Ni addition in the 7075 alloy can refine the solidification grains and even cause equiaxed primary grains in the solidification, which enhanced the intergranular feeding ability. Al3Ni formed as an intergranular phase after the solidification of primary α–Al grains, which increased the eutectic amount. Both the refined α–Al grains and increased eutectic phase led to the decrease of intergranular porosities.
- (2)
- The 7075 Al alloy solidified as a regular lamellar eutectic structure, while the intergranular phases in the 7075 Al–0.6 Ni alloy and the 7075 Al–1.2 Ni alloy consisted of multiple intermetallic compounds including Al3Ni, Al7Cu2Fe, MgZn2, and Al3CuMg. Al3Ni solidified followed by the solidification of primary α–Al and Al7Cu2Fe. Finally, the Al2CuMg phase and MgZn2 phase were sequentially precipitated from the residual liquid.
- (3)
- The as-cast Ni–containing 7075 alloys showed enhanced tensile strength and elongation compared with the as-cast 7075 alloy. In addition, 0.6% Ni addition in the 7075 alloy can get optimal mechanical properties. Too much Ni addition produced coarsening Al3Ni phase and led to premature brittle fracture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y. The Use of Aluminum Alloys in Structures: Review and Outlook. Structures 2023, 57, 105290. [Google Scholar] [CrossRef]
- Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S. Recent Development in Aluminium Alloys for Aerospace Applications. Mater. Sci. Eng. A 2000, 280, 102–107. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent Development in Aluminium Alloys for the Automotive Industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Ghiaasiaan, R.; Amirkhiz, B.S.; Shankar, S. Quantitative Metallography of Precipitating and Secondary Phases after Strengthening Treatment of Net Shaped Casting of Al-Zn-Mg-Cu (7000) Alloys. Mater. Sci. Eng. A 2017, 698, 206–217. [Google Scholar] [CrossRef]
- Yang, H.; Watson, D.; Wang, Y.; Ji, S. Effect of Nickel on the Microstructure and Mechanical Property of Die-Cast Al–Mg–Si–Mn Alloy. J. Mater. Sci. 2014, 49, 8412–8422. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, X.; Ji, S. Effects of Ni on the Microstructure, Hot Tear and Mechanical Properties of Al–Zn–Mg–Cu Alloys under as-Cast Condition. J. Alloys Compd. 2019, 821, 153458. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent Developments in Advanced Aircraft Aluminium Alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Kim, D.; Kim, K. Castability and Mechanical Properties of New 7xxx Aluminum Alloys for Automotive Chassis/Body Applications. J. Alloys Compd. 2017, 698 (Suppl. C), 577–590. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.R.; Zhao, Z.Y.; Li, H.X.; Katgerman, L.; Zhang, J.S.; Zhuang, L.Z. Effect of Main Elements (Zn, Mg, and Cu) on Hot Tearing Susceptibility During Direct-Chill Casting of 7xxx Aluminum Alloys. Metall. Mater. Trans. A 2019, 50, 3603–3616. [Google Scholar] [CrossRef]
- Pourgharibshahi, M.; Saghafian, H.; Divandari, M.; Timelli, G. Controlled Diffusion Solidification Pathway of an Aa 7xxx Series Aluminum Alloy. Metall. Mater. Trans. A 2019, 50, 326–335. [Google Scholar] [CrossRef]
- Peng, Y.-H.; Liu, C.-Y.; Wei, L.-L.; Jiang, H.-J.; Ge, Z.-J. Quench Sensitivity and Microstructures of High-Zn-Content Al–Zn–Mg–Cu Alloys with Different Cu Contents and Sc Addition. Trans. Nonferrous Met. Soc. China 2021, 31, 24–35. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, P.; Sui, Y.; Jiang, Y.; Zhou, R. Influence of Zr Content on Microstructure and Mechanical Properties of as-Cast Al-Zn-Mg-Cu Alloy. J. Alloys Compd. 2021, 867, 158920. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Pan, Q.; Liu, B.; Long, L.; Wang, W.; Ye, J.; Huang, Z.; Xiang, S. Effect of Sc Content on Microstructure and Properties of Al-Zn-Mg-Cu-Zr Alloy. Mater. Today Commun. 2021, 26, 101899. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Bai, Y.; Xu, Y. Research on Microstructure and Mechanical Properties of Rheological Die Forging Parts of Al-6.54zn-2.40cu-2.35mg-0.10zr(-Sc) Alloy. Materials 2020, 13, 5591. [Google Scholar] [CrossRef]
- Zhao, P.Z.; Tsuchida, T. Effect of Fabrication Conditions and Cr, Zr Contents on the Grain Structure of 7075 and 6061 Aluminum Alloys. Mater. Sci. Eng. A 2009, 499, 78–82. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Hojo, T.; Akiyama, E. Mechanisms of Hydrogen Embrittlement in High-Strength Aluminum Alloys Containing Coherent or Incoherent Dispersoids. Corros. Sci. 2022, 194, 109895. [Google Scholar] [CrossRef]
- Sheykh-Jaberi, F.; Cockcroft, S.L.; Maijer, D.M.; Phillion, A. Meso-Scale Modelling of Semi-Solid Deformation in Aluminum Foundry Alloys: Effects of Feeding and Microstructure on Hot Tearing Susceptibility. J. Mater. Process. Technol. 2020, 279, 116551. [Google Scholar] [CrossRef]
- Pourgharibshahi, M.; Divandari, M.; Saghafian, H.; Timelli, G. Eutectic Nucleation in 7xxx Series Aluminum Alloys from a Non-Classical Viewpoint. Metall. Mater. Trans. A 2020, 51, 4572–4583. [Google Scholar] [CrossRef]
- Kakitani, R.; Reyes, R.V.; Garcia, A.; Spinelli, J.E.; Cheung, N. Relationship between Spacing of Eutectic Colonies and Tensile Properties of Transient Directionally Solidified Al-Ni Eutectic Alloy. J. Alloys Compd. 2017, 733, 59–68. [Google Scholar] [CrossRef]
- Op, A.R.N.; Arul, S. Effect of Nickel Reinforcement on Micro Hardness and Wear Resistance of Aluminium Alloy Al7075. Mater. Today Proc. 2020, 24, 1042–1051. [Google Scholar] [CrossRef]
- Fan, Y.; Makhlouf, M.M. The Al-Al3ni Eutectic Reaction: Crystallography and Mechanism of Formation. Metall. Mater. Trans. Part A 2015, 46, 3808–3812. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Frederick, A.; Wang, Y.; Wang, Y.; Allard, L.; Koehler, M.; Shin, S.; Hu, A.; Feng, Z. In-Situ Formation of Al3ni Nano Particles in Synthesis of Al 7075 Alloy by Friction Stir Processing with Ni Powder Addition. J. Mater. Process. Technol. 2023, 311, 117803. [Google Scholar] [CrossRef]
- Lucia, L.; Maria, D.G.; Maverick, G.; Fortini, A.; Merlin, M.; Casari, D.; Sabatino, M.D.; Cerri, E.; Garagnani, G.L. Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 Wt to 2 Wt %. Met. Open Access Metall. J. 2018, 8, 224. [Google Scholar]
- ASTM E8/E8M-21; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM E112-13; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2021.
- Styles, M.; Bastow, T.; Gibson, M.; Hutchinson, C. Substitution of Cu and/or Al in H Phase (Mgzn2) and the Implications for Precipitation in Al–Zn–Mg–(Cu) Alloys. Intermetallics 2014, 49, 40–51. [Google Scholar] [CrossRef]
- Mondal, C.; Mukhopadhyay, A.K. On the Nature of T(Al2mg3zn3) and S(Al2cumg) Phases Present in as-Cast and Annealed 7055 Aluminum Alloy. Mater. Sci. Eng. A 2005, 391, 367–376. [Google Scholar] [CrossRef]
- Liu, L.L.; Pan, Q.L.; Wang, X.D.; Xiong, S. The Effects of Aging Treatments on Mechanical Property and Corrosion Behavior of Spray Formed 7055 Aluminium Alloy. J. Alloys Compd. 2018, 735, 261–276. [Google Scholar] [CrossRef]
- Malekan, M.; Shabestari, S.G. Computer-Aided Cooling Curve Thermal Analysis Used to Predict the Quality of Aluminum Alloys. J. Therm. Anal. Calorim. 2011, 103, 453–458. [Google Scholar] [CrossRef]
- Shabestari, S.G.; Malekan, M. Thermal Analysis Study of the Effect of the Cooling Rate on the Microstructure and Solidification Parameters of 319 Aluminum Alloy. Can. Metall. Q. 2005, 44, 305–312. [Google Scholar] [CrossRef]
- Yavari, F.; Shabestari, S.G. Effect of Cooling Rate and Al Content on Solidification Characteristics of Az Magnesium Alloys Using Cooling Curve Thermal Analysis. J. Therm. Anal. Calorim. 2017, 129, 655–662. [Google Scholar] [CrossRef]
- Okamoto, H. Al-Ni (Aluminum-Nickel). J. Phase Equilibria Diffus. 2004, 25, 394. [Google Scholar] [CrossRef]
- Apel, M.; Boussinot, G.; D Ring, M.; Schmidt, M. Eutectic Solidification in Al-Ni for L-Pbf Conditions: A Phase-Field Simulation Study. Procedia CIRP 2020, 94, 64–68. [Google Scholar] [CrossRef]
- Parajuli, P.; Mendoza-Cruz, R.; Hurtado-Macias, A.; Santiago, U.; Yacamán, M.J. A Direct Observation of Ordered Structures Induced by Cu Segregation at Grain Boundaries of Al 7075 Alloys. Phys. Status Solidi 2018, 215, 1800240. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M.; Hojo, T. Effect of Solution Treatment Temperature on Grain Boundary Composition and Environmental Hydrogen Embrittlement of an Al–Zn–Mg–Cu Alloy. Vacuum 2021, 184, 109937. [Google Scholar] [CrossRef]
- Luo, S.; Castany, P.; Thuillier, S. Microstructure, Thermo-Mechanical Properties and Portevin-Le Chatelier Effect in Metastable Β Ti-Xmo Alloys. Mater. Sci. Eng. A 2019, 756, 61–70. [Google Scholar] [CrossRef]
- Ashkani, O.; Tavighi, M.R.; Karamimoghadam, M.; Moradi, M.; Bodaghi, M.; Rezayat, M. Influence of Aluminum and Copper on Mechanical Properties of Biocompatible Ti-Mo Alloys: A Simulation-Based Investigation. Micromachines 2023, 14, 1081. [Google Scholar] [CrossRef] [PubMed]
- Rezayat, M.; Karamimoghadam, M.; Ashkani, O.; Bodaghi, M. Characterization and Optimization of Cu-Al2o3 Nanocomposites Synthesized Via High Energy Planetary Milling: A Morphological and Structural Study. J. Compos. Sci. 2023, 7, 300. [Google Scholar] [CrossRef]
- Fang, C.; Souissi, M.; Que, Z.; Fan, Z. Crystal Chemistry and Electronic Properties of the Al-Rich Compounds, Al2cu, Ω-Al7cu2fe and Θ-Al13fe4 with Cu Solution. Metals 2022, 12, 329. [Google Scholar] [CrossRef]
- Dahle, A.K.; Nogita, K.; McDonald, S.D.; Zindel, J.W.; Hogan, L.M. Eutectic Nucleation and Growth in Hypoeutectic Al-Si Alloys at Different Strontium Levels. Metall. Mater. Trans. A 2001, 32, 949–960. [Google Scholar] [CrossRef]
- Lu, L.; Nogita, K.; Mcdonald, S.D.; Dahle, A.K. Eutectic Solidification and Its Role in Casting Porosity Formation. JOM 2004, 56, 52–58. [Google Scholar] [CrossRef]
- Fukui, Y.; Okada, H.; Kumazawa, N.; Watanabe, Y. Near-Net-Shape Forming of Al-Al3ni Functionally Graded Material over Eutectic Melting Temperature. Metall. Mater. Trans. A 2000, 31, 2627–2636. [Google Scholar] [CrossRef]
Alloy | Elements | |||||||
---|---|---|---|---|---|---|---|---|
Zn | Mg | Cu | Cr | Si | Fe | Ni | Al | |
7075 Al | 5.6 | 2.5 | 1.6 | 0.23 | 0.4 | 0.5 | 0 | Bal. |
7075 Al–0.6 Ni | 5.32 | 2.37 | 1.54 | 0.22 | 0.38 | 0.47 | 0.6 | Bal. |
7075 Al–1.2 Ni | 5.06 | 2.26 | 1.45 | 0.21 | 0.37 | 0.46 | 1.2 | Bal. |
Point | Zn | Mg | Cu | Si | Fe | Ni | Al |
---|---|---|---|---|---|---|---|
A | 2.41 | 1.56 | 0.46 | 0 | 0 | 0 | 95.55 |
B | 3.56 | 1.43 | 27.64 | 0.25 | 0.05 | 0 | 67.02 |
C | 1.92 | 0.84 | 5.14 | 2.56 | 10.63 | 0 | 78.09 |
D | 1.73 | 0.69 | 2.03 | 0.26 | 4.45 | 7.18 | 83.04 |
Alloy | TN,α, Nucleation Temperature | Ts, Solidus Temperature | Eutectic Reaction |
---|---|---|---|
7075 Al | 633 | 440 | 605 |
7075 Al–0.6 Ni | 635 | 457 | 625 |
7075 Al–1.2 Ni | 640 | 459 | 629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Qi, H.; Ma, S.; Wang, L.; He, N.; Li, F. Effect of Nickel Addition on Solidification Microstructure and Tensile Properties of Cast 7075 Aluminum Alloy. Crystals 2023, 13, 1589. https://doi.org/10.3390/cryst13111589
Wang K, Qi H, Ma S, Wang L, He N, Li F. Effect of Nickel Addition on Solidification Microstructure and Tensile Properties of Cast 7075 Aluminum Alloy. Crystals. 2023; 13(11):1589. https://doi.org/10.3390/cryst13111589
Chicago/Turabian StyleWang, Kai, Haoran Qi, Simu Ma, Linrui Wang, Naijun He, and Fuguo Li. 2023. "Effect of Nickel Addition on Solidification Microstructure and Tensile Properties of Cast 7075 Aluminum Alloy" Crystals 13, no. 11: 1589. https://doi.org/10.3390/cryst13111589
APA StyleWang, K., Qi, H., Ma, S., Wang, L., He, N., & Li, F. (2023). Effect of Nickel Addition on Solidification Microstructure and Tensile Properties of Cast 7075 Aluminum Alloy. Crystals, 13(11), 1589. https://doi.org/10.3390/cryst13111589