Assembly of Multi-Dimensional Microstructures of MXene towards Wearable Electromagnetic Attenuating Devices
Abstract
:1. Introduction
2. Mechanism of Electromagnetic Attenuation
2.1. Electromagnetic Absorption
2.2. Electromagnetic Interference Shielding
3. Assembly of Multi-Dimensional MXenes
3.1. Zero-Dimensional Structures
3.1.1. Electrostatically Driven Self-Assembly
3.1.2. Hydrogen-Bond-Driven Self-Assembly
3.1.3. Covalent Bonds Drive Self-Assembly
3.2. One-Dimensional Structures
3.2.1. Template-Based Method
3.2.2. Spinning
3.3. Two-Dimensional Structures
3.3.1. Evaporative Self-Assembly
3.3.2. Spraying
3.3.3. Vacuum-Assisted Filtration
3.4. Three-Dimensional Structures
3.4.1. In Situ Growth
3.4.2. Freeze Drying
4. Electromagnetic Attenuation Performance
4.1. Electromagnetic Absorption Performance of Multi-Dimensional MXenes
4.2. Electromagnetic Shielding Performance of Multi-Dimensional MXenes
5. Additional Extended Functionality towards Wearable Devices
5.1. Thermal Conversion
5.2. Thermal Management
5.3. Self-Cleaning and Transparency
6. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Guo, J.N.; Si, Y.F.; Song, R.G.; Zu, H.R.; Xin, Y.T.; Ye, D.; Xu, M.; Li, B.W.; He, D.P. High-Conductivity MXene Film-Based Millimeter Wave Antenna for 5G Applications. Crystals 2023, 13, 1136. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef]
- Yang, S.H.; Lee, Y.J.; Kang, H.; Park, S.K.; Kang, Y.C. Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core-Shell Structure for High-Performance Potassium-Ion Batteries. Nano-Micro Lett. 2022, 14, 17. [Google Scholar] [CrossRef]
- Hong, L.; Ju, S.L.; Yang, Y.H.; Zheng, J.N.; Xia, G.L.; Huang, Z.G.; Liu, X.Y.; Yu, X.B. Hollow-shell structured porous CoSe2 microspheres encapsulated by MXene nanosheets for advanced lithium storage. Sustain. Energy Fuels 2020, 4, 2352–2362. [Google Scholar] [CrossRef]
- Liu, L.X.; Chen, W.; Zhang, H.B.; Ye, L.X.; Wang, Z.G.; Zhang, Y.; Min, P.; Yu, Z.Z. Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency. Nano-Micro Lett. 2022, 14, 111. [Google Scholar] [CrossRef]
- Wang, J.Q.; Liu, L.; Jiao, S.L.; Ma, K.J.; Lv, J.; Yang, J.J. Hierarchical Carbon Fiber@MXene@MoS2 Core-sheath Synergistic Microstructure for Tunable and Efficient Microwave Absorption. Adv. Funct. Mater. 2020, 30, 2002595. [Google Scholar] [CrossRef]
- Liu, L.X.; Chen, W.; Zhang, H.B.; Wang, Q.W.; Guan, F.L.; Yu, Z.Z. Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Q.T.; Xu, P.H.; Feng, Y.Z.; Ma, J.M.; Liu, C.T.; Shen, C.Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388. [Google Scholar] [CrossRef]
- Weng, C.X.; Wang, G.R.; Dai, Z.H.; Pei, Y.M.; Liu, L.Q.; Zhang, Z. Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 2019, 11, 22804–22812. [Google Scholar] [CrossRef]
- Li, M.H.; Zhu, W.J.; Li, X.; Xu, H.L.; Fan, X.M.; Wu, H.J.; Ye, F.; Xue, J.M.; Li, X.Q.; Cheng, L.F.; et al. Ti3C2Tx/MoS2 Self-Rolling Rod-Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Adv. Sci. 2022, 9, 2201118. [Google Scholar] [CrossRef]
- Liu, Z.W.; Liu, Z.B.; Li, G.L.; Zhao, Y.; Wang, K.; Chen, X.B. Micro-Structure and Dielectric Properties of Ti3C2Tx MXene after Annealing Treatment under Inert Gases. Crystals 2023, 13, 1234. [Google Scholar] [CrossRef]
- Zeng, Z.H.; Wang, C.X.; Siqueira, G.; Han, D.X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nuesch, F.; Zhang, C.F.; Nystrom, G. Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance. Adv. Sci. 2020, 7, 2000979. [Google Scholar] [CrossRef]
- Zhou, B.; Song, J.Z.; Wang, B.; Feng, Y.Z.; Liu, C.T.; Shen, C.Y. Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 2022, 15, 9520–9530. [Google Scholar] [CrossRef]
- Hou, T.Q.; Jia, Z.R.; Wang, B.B.; Li, H.B.; Liu, X.H.; Chi, Q.G.; Wu, G.L. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 2021, 422, 130079. [Google Scholar] [CrossRef]
- Deng, Z.M.; Tang, P.P.; Wu, X.Y.; Zhang, H.B.; Yu, Z.Z. Superelastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547. [Google Scholar] [CrossRef]
- Xiang, Z.; Shi, Y.Y.; Zhu, X.J.; Cai, L.; Lu, W. Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion. Nano-Micro Lett. 2021, 13, 150. [Google Scholar] [CrossRef]
- Cao, Y.; Zeng, Z.H.; Huang, D.Y.; Chen, Y.; Zhang, L.; Sheng, X.X. Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res. 2022, 15, 8524–8535. [Google Scholar] [CrossRef]
- Gao, Q.S.; Pan, Y.M.; Zheng, G.Q.; Liu, C.T.; Shen, C.Y.; Liu, X.H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285. [Google Scholar] [CrossRef]
- Ma, C.; Cao, W.T.; Zhang, W.; Ma, M.G.; Sun, W.M.; Zhang, J.; Chen, F. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem. Eng. J. 2021, 403, 126438. [Google Scholar] [CrossRef]
- Wu, N.N.; Zhao, B.B.; Chen, X.Y.; Hou, C.X.; Huang, M.N.; Alhadhrami, A.; Mersal, G.A.M.; Ibrahim, M.M.; Tian, J. Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2Tx MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 1548–1556. [Google Scholar] [CrossRef]
- He, P.; Cao, M.S.; Shu, J.C.; Cai, Y.Z.; Wang, X.X.; Zhao, Q.L.; Yuan, J. Atomic Layer Tailoring Titanium Carbide MXene to Tune Transport and Polarization for Utilization of Electromagnetic Energy beyond Solar and Chemical Energy. ACS Appl. Mater. Interfaces 2019, 11, 12535–12543. [Google Scholar] [CrossRef]
- Liang, L.Y.; Han, G.J.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y.Z.; Ma, J.M.; Wang, Y.M.; Zhang, R.; Liu, C.T. Promising Ti3C2Tx MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409. [Google Scholar] [CrossRef]
- Zhou, X.J.; Wen, J.W.; Wang, Z.N.; Ma, X.H.; Wu, H.J. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 2022, 115, 148–155. [Google Scholar] [CrossRef]
- Ying, M.F.; Zhao, R.Z.; Hu, X.; Zhang, Z.H.; Liu, W.W.; Yu, J.Y.; Liu, X.L.; Liu, X.G.; Rong, H.W.; Wu, C.; et al. Wrinkled Titanium Carbide (MXene) with Surface Charge Polarizations through Chemical Etching for Superior Electromagnetic Interference Shielding. Angew. Chem.-Int. Ed. 2022, 61, e202201323. [Google Scholar] [CrossRef]
- Yang, J.J.; Wang, J.Q.; Li, H.Q.; Wu, Z.; Xing, Y.Q.; Chen, Y.F.; Liu, L. MoS2/MXene Aerogel with Conformal Heterogeneous Interfaces Tailored by Atomic Layer Deposition for Tunable Microwave Absorption. Adv. Sci. 2022, 9, 2101988. [Google Scholar] [CrossRef]
- Zeng, X.J.; Zhao, C.; Yin, Y.C.; Nie, T.L.; Xie, N.H.; Yu, R.H.; Stucky, G.D. Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 2022, 193, 26–34. [Google Scholar] [CrossRef]
- Gao, X.R.; Wang, B.B.; Wang, K.K.; Xu, S.; Liu, S.P.; Liu, X.H.; Jia, Z.R.; Wu, G.L. Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 2021, 583, 510–521. [Google Scholar] [CrossRef]
- Hou, T.Q.; Jia, Z.R.; Wang, B.B.; Li, H.B.; Liu, X.H.; Bi, L.; Wu, G.L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875. [Google Scholar] [CrossRef]
- Wen, C.Y.; Li, X.; Zhang, R.X.; Xu, C.Y.; You, W.B.; Liu, Z.W.; Zhao, B.; Che, R.C. High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres. ACS Nano 2022, 16, 1150–1159. [Google Scholar] [CrossRef]
- Liang, L.Y.; Yang, R.S.; Han, G.J.; Feng, Y.Z.; Zhao, B.; Zhang, R.; Wang, Y.M.; Liu, C.T. Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2020, 12, 2644–2654. [Google Scholar] [CrossRef]
- Cai, L.; Pan, F.; Zhu, X.J.; Dong, Y.Y.; Shi, Y.Y.; Xiang, Z.; Cheng, J.; Jiang, H.J.; Shi, Z.; Lu, W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865. [Google Scholar] [CrossRef]
- Sun, C.H.; Jia, Z.R.; Xu, S.; Hu, D.Q.; Zhang, C.H.; Wu, G.L. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 113, 128–137. [Google Scholar] [CrossRef]
- Gao, X.R.; Jia, Z.R.; Wang, B.B.; Wu, X.M.; Sun, T.; Liu, X.H.; Chi, Q.G.; Wu, G.L. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 2021, 419, 130019. [Google Scholar] [CrossRef]
- Montgomery, C.G.; Dicke, R.H.; Purcell, E.M. Principles of Microwave Circuits; McGraw-Hill: New York, NY, USA, 1948. [Google Scholar]
- Bird, T.S. Definition and Misuse of Return Loss. IEEE Antennas Propag. Mag. 2009, 51, 166–167. [Google Scholar] [CrossRef]
- Wang, D.J.; Liu, Y.C.; Zhu, C.H.; Yang, G.; Liu, B.; Chen, H.F.; Cui, Y.Y.; Luo, H.J.; Gao, Y.F. Preparation of lanthanum zirconate films with a widely controllable La/Zr ratio by LCVD. Ceram. Int. 2018, 44, 10621–10627. [Google Scholar] [CrossRef]
- Collin, R.E. Field Theory of Guided Waves; McGraw-Hill: New York, NY, USA, 1960. [Google Scholar]
- Hong, Y.K.; Lee, C.Y.; Jeong, C.K.; Lee, D.E.; Kim, K.; Joo, J. Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 2003, 74, 1098–1102. [Google Scholar] [CrossRef]
- Han, M.K.; Yin, X.W.; Hantanasirisakul, K.; Li, X.L.; Iqbal, A.; Hatter, C.B.; Anasori, B.; Koo, C.M.; Torita, T.; Soda, Y.; et al. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Adv. Opt. Mater. 2019, 7, 1900267. [Google Scholar] [CrossRef]
- Iqbal, A.; Sambyal, P.; Koo, C.M. 2D MXenes for Electromagnetic Shielding: A Review. Adv. Funct. Mater. 2020, 30, 2000883. [Google Scholar] [CrossRef]
- Wan, Y.J.; Rajavel, K.; Li, X.M.; Wang, X.Y.; Liao, S.Y.; Lin, Z.Q.; Zhu, P.L.; Sun, R.; Wong, C.P. Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength. Chem. Eng. J. 2021, 408, 127303. [Google Scholar] [CrossRef]
- Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M.K.; Hong, S.M.; Han, M.K.; Gogotsi, Y.; Koo, C.M. Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054. [Google Scholar] [CrossRef]
- Yu, Y.H.; Yi, P.; Xu, W.B.; Sun, X.; Deng, G.; Liu, X.F.; Shui, J.L.; Yu, R.H. Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances. Nano-Micro Lett. 2022, 14, 77. [Google Scholar] [CrossRef]
- Tan, Z.N.; Zhao, H.; Sun, F.R.; Ran, L.X.; Yi, L.F.; Zhao, L.J.; Wu, J.R. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106809. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, B.Y.; Zhang, H.B.; Xie, X.; Tu, T.X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z.Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622. [Google Scholar] [CrossRef]
- He, P.; Cao, M.S.; Cao, W.Q.; Yuan, J. Developing MXenes from Wireless Communication to Electromagnetic Attenuation. Nano-Micro Lett. 2021, 13, 115. [Google Scholar] [CrossRef]
- Liu, Z.W.; Li, G.L.; Zhao, Y.; Chen, X.B. Surface Groups and Dielectric Properties of Ti3C2Tx MXene Nanosheets after NH3·H2O Solvothermal Treatment under Different Temperatures. Crystals 2023, 13, 1005. [Google Scholar] [CrossRef]
- Sun, R.H.; Zhang, H.B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z.Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27, 1702807. [Google Scholar] [CrossRef]
- Lamiel, C.; Hussain, I.; Ogunsakin, O.R.; Zhang, K.L. MXene in core-shell structures: Research progress and future prospects. J. Mater. Chem. A 2022, 10, 14247–14272. [Google Scholar] [CrossRef]
- Wang, P.R.; Yan, Y.T.; Cheng, C.; Zhang, W.M.; Zhou, D.K.; Li, L.S.; Yang, X.W.; Liao, X.Z.; Ma, Z.F.; He, Y.S. Structural and chemical interplay between nano-active and encapsulation materials in a core-shell SnO2@MXene lithium ion anode system. CrystEngComm 2021, 23, 368–377. [Google Scholar] [CrossRef]
- Zhao, X.; Zha, X.J.; Tang, L.S.; Pu, J.H.; Ke, K.; Bao, R.Y.; Liu, Z.Y.; Yang, M.B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264. [Google Scholar] [CrossRef]
- Li, X.L.; Yin, X.W.; Song, C.Q.; Han, M.K.; Xu, H.L.; Duan, W.Y.; Cheng, L.F.; Zhang, L.T. Self-Assembly Core-Shell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Adv. Funct. Mater. 2018, 28, 1803938. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Xie, X.Q.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.X.; Gogotsi, Y. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef]
- Zhang, S.X.; Liu, H.; Cao, B.; Zhu, Q.Z.; Zhang, P.; Zhang, X.; Chen, R.J.; Wu, F.; Xu, B. An MXene/CNTs@P nanohybrid with stable Ti-O-P bonds for enhanced lithium ion storage. J. Mater. Chem. A 2019, 7, 21766–21773. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Wei, S.Q.; Zhou, Q.; Zhang, P.J.; Wang, C.D.; Zhu, K.F.; Xu, W.J.; Guo, X.; Yang, X.Y.; Wang, Y.X.; et al. Ti-Cl bonds decorated Ti2NTx MXene towards high-performance lithium-ion batteries. 2D Mater. 2023, 10, 014001. [Google Scholar] [CrossRef]
- Pan, Z.H.; Kang, L.X.; Li, T.; Waqar, M.; Yang, J.; Gu, Q.L.; Liu, X.M.; Kou, Z.K.; Wang, Z.; Zheng, L.R.; et al. Black Phosphorus@Ti3C2Tx MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. ACS Nano 2021, 15, 12975–12987. [Google Scholar] [CrossRef]
- Yang, F.X.; Huang, Y.; Han, X.P.; Zhang, S.; Yu, M.; Zhang, J.P.; Sun, X. Covalent Bonding of MXene/Reduced Graphene Oxide Composites for Efficient Electromagnetic Wave Absorption. ACS Appl. Nano Mater. 2023, 6, 3367–3377. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Uzun, S.; Seyedin, S.; Lynch, P.A.; Akuzum, B.; Wang, Z.Y.; Qin, S.; Alhabeb, M.; Shuck, C.E.; Lei, W.W.; et al. Additive-Free MXene Liquid Crystals and Fibers. ACS Cent. Sci. 2020, 6, 254–265. [Google Scholar] [CrossRef]
- Levitt, A.S.; Alhabeb, M.; Hatter, C.B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 269–277. [Google Scholar] [CrossRef]
- Levitt, A.; Seyedin, S.; Zhang, J.Z.; Wang, X.H.; Razal, J.M.; Dion, G.; Gogotsi, Y. Bath Electrospinning of Continuous and Scalable Multifunctional MXene-Infiltrated Nanoyarns. Small 2020, 16, 2002158. [Google Scholar] [CrossRef]
- Ajnsztajn, A.; Ferguson, S.; Thostenson, J.O.; Ngaboyamahina, E.; Parker, C.B.; Glass, J.T.; Stiff-Roberts, A.D. Transparent MXene-Polymer Supercapacitive Film Deposited Using RIR-MAPLE. Crystals 2020, 10, 152. [Google Scholar] [CrossRef]
- Yun, T.; Kim, H.; Iqbal, A.; Cho, Y.S.; Lee, G.S.; Kim, M.K.; Kim, S.J.; Kim, D.; Gogotsi, Y.; Kim, S.O.; et al. Electromagnetic Shielding of Monolayer MXene Assemblies. Adv. Mater. 2020, 32, 1906769. [Google Scholar] [CrossRef]
- Zhou, B.; Su, M.J.; Yang, D.Z.; Han, G.J.; Feng, Y.Z.; Wang, B.; Ma, J.L.; Ma, J.M.; Liu, C.T.; Shen, C.Y. Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance. ACS Appl. Mater. Interfaces 2020, 12, 40859–40869. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Xiong, P.X.; Liu, J.Z.; Feng, F.F.; Xun, X.W.; Gama, F.M.; Zhang, Q.C.; Yao, F.L.; Yang, Z.W.; Luo, H.L.; et al. Ultrathin, Strong, and Highly Flexible Ti3C2Tx MXene/Bacterial Cellulose Composite Films for High-Performance Electromagnetic Interference Shielding. ACS Nano 2021, 15, 8439–8449. [Google Scholar] [CrossRef]
- Li, E.; Pan, Y.M.; Wang, C.F.; Liu, C.T.; Shen, C.Y.; Pan, C.F.; Liu, X.H. Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications. Chem. Eng. J. 2021, 420, 129864. [Google Scholar] [CrossRef]
- Wang, X.F.; Lei, Z.W.; Ma, X.D.; He, G.F.; Xu, T.; Tan, J.; Wang, L.L.; Zhang, X.S.; Qu, L.J.; Zhang, X.J. A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. Chem. Eng. J. 2022, 430, 132605. [Google Scholar] [CrossRef]
- Han, M.K.; Shuck, C.E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C.M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano 2020, 14, 5008–5016. [Google Scholar] [CrossRef]
- Li, G.H.; Wyatt, B.C.; Song, F.; Yu, C.Q.; Wu, Z.J.; Xie, X.Q.; Anasori, B.; Zhang, N. 2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials. Adv. Funct. Mater. 2021, 31, 2105043. [Google Scholar] [CrossRef]
- Cao, W.T.; Ma, C.; Tan, S.; Ma, M.G.; Wan, P.B.; Chen, F. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro Lett. 2019, 11, 72. [Google Scholar] [CrossRef]
- Wan, S.J.; Li, X.; Chen, Y.; Liu, N.N.; Du, Y.; Dou, S.X.; Jiang, L.; Cheng, Q.F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99. [Google Scholar] [CrossRef]
- Wang, J.F.; He, J.B.; Kan, D.X.; Chen, K.Y.; Song, M.S.; Huo, W.T. MXene Film Prepared by Vacuum-Assisted Filtration: Properties and Applications. Crystals 2022, 12, 1034. [Google Scholar] [CrossRef]
- Tang, T.T.; Wang, S.C.; Jiang, Y.; Xu, Z.G.; Chen, Y.; Peng, T.S.; Khan, F.; Feng, J.B.; Song, P.G.; Zhao, Y. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 66–75. [Google Scholar] [CrossRef]
- Jin, X.X.; Wang, J.F.; Dai, L.Z.; Liu, X.Y.; Li, L.; Yang, Y.Y.; Cao, Y.X.; Wang, W.J.; Wu, H.; Guo, S.Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475. [Google Scholar] [CrossRef]
- Wang, Q.W.; Zhang, H.B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.X.; Yang, R.; Koratkar, N.; Yu, Z.Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29, 1806819. [Google Scholar] [CrossRef]
- Luo, J.M.; Zhang, W.K.; Yuan, H.D.; Jin, C.B.; Zhang, L.Y.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y.P.; et al. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11, 2459–2469. [Google Scholar] [CrossRef]
- Zou, Z.; Ning, M.Q.; Lei, Z.K.; Zhuang, X.H.; Tan, G.G.; Hou, J.H.; Xu, H.; Man, Q.K.; Li, J.B.; Li, R.W. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz. Carbon 2022, 193, 182–194. [Google Scholar] [CrossRef]
- Li, X.; You, W.B.; Xu, C.Y.; Wang, L.; Yang, L.T.; Li, Y.S.; Che, R.C. 3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. Nano-Micro Lett. 2021, 13, 157. [Google Scholar] [CrossRef]
- Zong, Z.; Ren, P.G.; Guo, Z.Z.; Wang, J.; Chen, Z.Y.; Jin, Y.L.; Ren, F. Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. J. Colloid Interface Sci. 2022, 619, 96–105. [Google Scholar] [CrossRef]
- Wang, L.; Song, P.; Lin, C.T.; Kong, J.; Gu, J.W. 3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. Research 2020, 2020, 4093732. [Google Scholar] [CrossRef]
- Fan, Z.M.; Wang, D.L.; Yuan, Y.; Wang, Y.S.; Cheng, Z.J.; Liu, Y.Y.; Xie, Z.M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sun, X.B.; Xin, Y.; Yang, S.H.; Hu, P.F.; Wang, G.S. Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber. J. Mater. Sci. Technol. 2023, 134, 132–141. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sun, X.B.; Yang, S.H.; Zhao, P.Y.; Zhang, X.J.; Wang, G.S.; Huang, Y. 3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption. Nano-Micro Lett. 2021, 13, 206. [Google Scholar] [CrossRef]
- Niu, H.H.; Tu, X.Y.; Zhang, S.; Li, Y.Y.; Wang, H.L.; Shao, G.; Zhang, R.; Li, H.X.; Zhao, B.; Fan, B.B. Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, S.S.; Ma, B.B.; Xiong, Y.; Luo, H.; Cheng, Y.Z.; Li, X.C.; Wang, X.; Gong, R.Z. Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem. Eng. J. 2022, 431, 134007. [Google Scholar] [CrossRef]
- Li, Y.; Meng, F.B.; Mei, Y.; Wang, H.G.; Guo, Y.F.; Wang, Y.; Peng, F.X.; Huang, F.; Zhou, Z.W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhao, H.B.; Cheng, J.B.; Liu, B.W.; Fu, Q.; Wang, Y.Z. Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. Nano-Micro Lett. 2022, 14, 76. [Google Scholar] [CrossRef]
- Cui, Y.H.; Yang, K.; Wang, J.Q.; Shah, T.; Zhang, Q.Y.; Zhang, B.L. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.H.; Wang, J.Q.; Shah, T.; Liu, P.; Zhang, Q.Y.; Zhang, B.L. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 2021, 422, 130591. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.C.; You, W.B.; Yang, L.T.; Che, R.C. Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber. Nano-Micro Lett. 2022, 14, 73. [Google Scholar] [CrossRef]
- Hu, K.X.; Wang, H.H.; Zhang, X.; Huang, H.; Qiu, T.; Wang, Y.; Zhang, C.F.; Pan, L.M.; Yang, J. Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance. Chem. Eng. J. 2021, 408, 127283. [Google Scholar] [CrossRef]
- Jia, X.C.; Shen, B.; Zhang, L.H.; Zheng, W.G. Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.K.; Wang, Z.G.; Zhao, T.Y.; Liu, L.X.; Zhang, H.B.; Yu, Z.Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Z.W.; Zhu, M.H.; Liu, L.N.; Dai, J.F.; Shi, Y.Q.; Gao, J.F.; Dinh, T.; Nguyen, T.; Tang, L.C.; et al. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J. Mater. Sci. Technol. 2023, 132, 59–68. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ruan, K.P.; Gu, J.W. Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities. Small 2021, 17, 2101951. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.X.; Zhang, H.B.; Yu, Z.Z. Flexible, Transparent, and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14, 16643–16653. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.Y.; Zhou, J.L.; Du, F.L.; Teng, C. Bioinspired, High-Strength, and Flexible MXene/Aramid Fiber for Electromagnetic Interference Shielding Papers with Joule Heating Performance. ACS Nano 2022, 16, 6700–6711. [Google Scholar] [CrossRef]
- Zhang, D.B.; Yin, R.; Zheng, Y.J.; Li, Q.M.; Liu, H.; Liu, C.T.; Shen, C.Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Q.B.; Fan, J.; Wang, W.; Yu, D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep. Purif. Technol. 2021, 254, 117615. [Google Scholar] [CrossRef]
- Li, R.Y.; Zhang, L.B.; Shi, L.; Wang, P. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano 2017, 11, 3752–3759. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.G.; Yu, L.D.; Chen, Y.; Shi, J.L. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef]
- Zhang, X.S.; Wang, X.F.; Lei, Z.W.; Wang, L.L.; Tian, M.W.; Zhu, S.F.; Xiao, H.; Tang, X.N.; Qu, L.J. Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances. ACS Appl. Mater. Interfaces 2020, 12, 14459–14467. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Q.; Zhang, S.; Fan, X.; Qin, J.B.; Shi, X.T.; Zhang, G.C. rGO/MXene sandwich-structured film at spunlace non-woven fabric substrate: Application to EMI shielding and electrical heating. J. Colloid Interface Sci. 2022, 614, 194–204. [Google Scholar] [CrossRef]
- Jia, P.F.; Zhu, Y.L.; Lu, J.Y.; Wang, B.Y.; Song, L.; Wang, B.B.; Hu, Y. Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance. Chem. Eng. J. 2022, 439, 135673. [Google Scholar] [CrossRef]
- Cheng, H.R.; Xing, L.L.; Zuo, Y.; Pan, Y.M.; Huang, M.N.; Alhadhrami, A.; Ibrahim, M.M.; El-Bahy, Z.M.; Liu, C.T.; Shen, C.Y.; et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 755–765. [Google Scholar] [CrossRef]
- Cheng, H.R.; Pan, Y.M.; Wang, X.; Liu, C.T.; Shen, C.Y.; Schubert, D.W.; Guo, Z.H.; Liu, X.H. Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth. Nano-Micro Lett. 2022, 14, 63. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, D.S.; Zhou, Y.; Jiang, L. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO Array Hybrid Nanostructures on Cotton Fabric for Durable Self-Cleaning and Enhanced Microwave Absorption. ACS Nano 2020, 14, 8634–8645. [Google Scholar] [CrossRef]
- Zhu, M.; Yan, X.X.; Xu, H.L.; Xu, Y.J.; Kong, L. Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Jia, F.F.; Zhuo, L.H.; Ning, D.D.; Gao, K.; Xie, F. Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Compos. Part B Eng. 2021, 217, 108853. [Google Scholar] [CrossRef]
- Du, Y.Q.; Xu, J.; Fang, J.Y.; Zhang, Y.T.; Liu, X.Y.; Zuo, P.Y.; Zhuang, Q.X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Min, B.K.; Yi, Y.; Kim, S.J.; Choi, C.G. MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 2020, 393, 124608. [Google Scholar] [CrossRef]
Dimensionality | Materials | Thickness (mm) | RLmin (dB) | Optimum Absorption Frequency | Refs. |
---|---|---|---|---|---|
0 | Ti3C2Tx@GO | 1.2 | −49.1 | Ku | [85] |
0 | SiO2@ Ti3C2Tx | 1.3 | −58.01 | Ku | [83] |
0 | Ti3C2Tx@ZnO | 2 | −57.4 | Ku | [86] |
0 | Ti3C2Tx@Ni | 1.5 | −59.6 | Ku | [29] |
0 | RGO/Ti3C2Tx/Fe3O4 | 2.9 | −51.2 | X | [87] |
1 | C@Ti3C2Tx@MoS2 | 3.5 | −61.51 | C | [6] |
1 | Ti3C2Tx/CoNi/C | 1.6 | −51.6 | Ku | [88] |
2 | Ti3C2Tx/Ni/ZnO | 2.8 | −35.1 | X | [106] |
3 | NiCo Compound@ Ti3C2Tx | 1.7 | −67.22 | Ku | [82] |
3 | MoS2/Ti3C2Tx | 4.53 | −61.65 | S | [25] |
3 | Ti3C2Tx@MoS2 | 2.2 | −60.2 | Ku | [20] |
3 | Ti3C2Tx@Fe2O3 | 1.97 | −18.6 | Ku | [20] |
3 | CoO/MCo2O4/Ti3C2Tx (M = Fe, Cu, Zn) | 1.9 | −52.67 | Ku | [81] |
3 | NiSe2-CoSe2@C/Ti3C2Tx | 2.6 | −60.46 | X | [14] |
3 | NiCo2O4-Ti3C2Tx | 1.7 | −72.3 | Ku | [26] |
Dimensionality | Materials | Thickness (mm) | SEmax (dB) | Additional Functions | Refs. |
---|---|---|---|---|---|
1 | Aramid@Ti3C2Tx | 0.213 | 83.4 | - | [5] |
2 | Ti3C2Tx | 0.00004 | 21 | - | [67] |
2 | Ti3C2Tx | 0.000055 | 20 | - | [62] |
2 | Ti3C2Tx/Ag silk | 0.12 | 54 | Humidity response | [7] |
2 | Ti3C2Tx/amarid | 0.0141 | 48 | Electrothermal conversion | [96] |
2 | Chitosan/Ti3C2Tx | 0.035 | 40.8 | Thermal management Electrothermal conversion | [44] |
2 | Poly(vinyl alcohol)/Ti3C2Tx | 0.027 | 44.4 | Anti-dripping | [73] |
2 | Ti3C2Tx/thermoplastic polyurethane | 0.052 | 50.7 | Thermal management Electrothermal conversion | [18] |
2 | Phosphorylated Ti3C2Tx/polypropylene/polyethylenimine | 0.4 | 90 | Flame retardancy | [72] |
2 | Polymerized polypyrrole/Ti3C2Tx-poly(ethylene terephthalate) coated by silicone | 1.3 | 90 | Electrothermal conversion | [74] |
2 | Ti3C2Tx/Aramid | 1.04 | 35.7 | Electrothermal conversion Photothermal conversion | [66] |
2 | Ti3C2Tx/Ag-poly(vinyl alcohol) | 0.01 | 32 | Electrothermal conversion Photothermal conversion | [63] |
2 | Cellulose@Ti3C2Tx@Ag | 0.035 | 55.9 | Photothermal conversion | [8] |
3 | Ti3C2Tx | 1 | 69.2 | - | [39] |
3 | Ti3C2Tx/cellulose nanofibrils | 2 | 35.5 | - | [12] |
3 | Ti3C2Tx@wood | 10 | 72 | - | [107] |
3 | Ti3C2Tx/multiwall carbon nanotubes | 3 | 103.9 | - | [42] |
3 | Ti3C2Tx/aramid | 1.9 | 56.8 | - | [108] |
3 | Ti3C2Tx/aramid | 2.5 | 65.5 | Flame retardant Thermal management | [109] |
3 | Polydimethylsiloxane-coated Ti3C2Tx/sodium alginate | 2 | 70.5 | - | [45] |
3 | Ni/Ti3C2Tx-melamine foam/polyethylene glycol | 2 | 34.6 | Electrothermal conversion Photothermal conversion | [104] |
3 | Fe3O4@Ti3C2Tx/graphene/poly (dimethylsiloxane) | 1 | 80 | Pressure sensing | [110] |
3 | Polydimethylsiloxane/Ti3C2Tx@polyaniline/Polypropylene | 12 | 39.8 | Reversible compressibility | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Cao, M.-S. Assembly of Multi-Dimensional Microstructures of MXene towards Wearable Electromagnetic Attenuating Devices. Crystals 2023, 13, 1612. https://doi.org/10.3390/cryst13121612
Zhang M, Cao M-S. Assembly of Multi-Dimensional Microstructures of MXene towards Wearable Electromagnetic Attenuating Devices. Crystals. 2023; 13(12):1612. https://doi.org/10.3390/cryst13121612
Chicago/Turabian StyleZhang, Min, and Mao-Sheng Cao. 2023. "Assembly of Multi-Dimensional Microstructures of MXene towards Wearable Electromagnetic Attenuating Devices" Crystals 13, no. 12: 1612. https://doi.org/10.3390/cryst13121612
APA StyleZhang, M., & Cao, M. -S. (2023). Assembly of Multi-Dimensional Microstructures of MXene towards Wearable Electromagnetic Attenuating Devices. Crystals, 13(12), 1612. https://doi.org/10.3390/cryst13121612