A Novel Combining Method for Composite Groove Structure Fabrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Mold Design
2.3. Designed Equipment and Processing
2.3.1. Filament Winding Device
2.3.2. 3D Printing Device
3. Test Results
3.1. Specimen Preparation
3.2. Testing Methods
3.2.1. Experiment Design
3.2.2. Interlaminar Shear Test
3.2.3. Test Result
3.2.4. Microscope Inspection
3.2.5. Thermal–Mechanical Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, H.; Chen, W.; Bai, G.; Dong, S. Experimental Study on shear Resistance of Aluminum Alloy plate Rivet with ring Slot. J. Build. Struct. 2016, 37, 143–149. [Google Scholar] [CrossRef]
- Fang, K.; Xiang, Z.T.; Zhang, J.; Yang, L.; Hu, G.H.; Cui, K.J.; Xu, J. Additive Manufacturing and Application of 3D printing Carbon Fiber reinforced plastics and composites. New Mater. Ind. 2017, 1, 31–37. [Google Scholar] [CrossRef]
- Wang, J.; Geng, Z.; Du, Z.; Gu, H.; Suo, H. Research on High precision Closed loop Tension Control System of Fiber Winding Machine. Fiber Compos. Mater. 2021, 38, 52–55. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, H.; Xing, P.; Zhu, G.; Zhu, J. Structural Reliability Evaluation Method of fiber Wound composite and its application. Propuls. Technol. 2022, 43, 177–186. [Google Scholar] [CrossRef]
- Sorrentino, L.; Anamateros, E.; Bellini, C.; Carrino, L.; Corcione, G.; Leone, A.; Paris, G. Robotic filament winding: An innovative technology to manufacture complex shape structural parts. Compos. Struct. 2019, 220, 699–707. [Google Scholar] [CrossRef]
- Ma, Q.; Ge, J.; Rejab, M.; Sun, B.; Ding, Y.; Nie, X.; Pang, H. Fabrication of the carbon fiber reinforced plastic(CFRP) cone tube through the laboratory-scale 3-axis winding machine. Mater. Today Proc. 2021, 46, 1645–1651. [Google Scholar] [CrossRef]
- Dawson, N.; Donna, K. Mae West: Pipe dream in munich. High Perform. Compos. 2011, 19, 46–53. [Google Scholar]
- Błachut, A.; Wollmann, T.; Panek, M.; Vater, M.; Kaleta, J.; Detyna, J.; Hoschützky, S.; Gude, M. Influence of Fiber Tension during Filament Winding on the Mechanical Properties of Composite Pressure Vessels. Compos. Struct. 2023, 304, 116337. [Google Scholar] [CrossRef]
- de Menezes, E.A.; Lisbôa, T.V.; Almeida, J.H.S.; Spickenheuer, A.; Amico, S.C.; Marczak, R.J. On the winding pattern influence for filament wound cylinders under axial compression, torsion, and internal pressure loads. Thin-Walled Struct. 2023, 191, 111041. [Google Scholar] [CrossRef]
- Adi, R.K.; Das, S.; Muflikhun, M.A. Design and analysis of filament winding machine for cylinder manufacturing process using glass fiber composite. Mater. Today Proc. 2022, 66, 2904–2907. [Google Scholar] [CrossRef]
- Früh, N.; Knippers, J. Multi-stage filament winding: Integrative design and fabrication method for fibre-reinforced composite components of complex geometries. Compos. Struct. 2021, 268, 113969. [Google Scholar] [CrossRef]
- Ma, X.; Yang, R.; Kang, N.; Wang, R. Research on polylactic acid composites based on 3D printing technology. J. Jilin Inst. Chem. Technol. 2022, 39, 10–14. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, G.F.; Tan, Y.G. The Nozzle Structure Design and Analysis for Continuous Carbon Fiber Composite 3D Printing. In Proceedings of the International Conference on Advanced Design and Manufacturing Engineering (ICADME 2017), Shenzhen, China, 10–11 May 2017; pp. 193–199. [Google Scholar]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Ming, Y.; Duan, Y.; Wang, B.; Xiao, H.; Zhang, X. 3D printing of high-performance fiber-reinforced resin matrix composites. Aerosp. Manuf. Technol. 2019, 62, 34–38. [Google Scholar] [CrossRef]
- Reuter, J.; Böcking, J.; Engel, B. End-forming of Continuous Fibre-reinforced Thermoplastic Tubes. Procedia Manuf. 2020, 47, 190–196. [Google Scholar] [CrossRef]
- Hou, Z.; Tian, X.; Zhang, J.; Zhe, L.; Zheng, Z.; Li, D.; Malakhov, A.V.; Polilov, A.N. Design and 3D printing of continuous fiber reinforced heterogeneous composites. Compos. Struct. 2020, 237, 111945. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 2016, 238, 218–225. [Google Scholar] [CrossRef]
- Prüß, H.; Vietor, T. Design for Fiber-Reinforced Additive Manufacturing. J. Mech. Des. 2015, 137, 111409. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, S.; Duan, J.; Fu, H.; Han, Z.; Geng, H.; Feng, Y. Line width prediction and mechanical properties of 3D printed continuous fiber reinforced polypropylene composites. Addit. Manuf. 2023, 61, 103372. [Google Scholar] [CrossRef]
- Rakhshbahar, M.; Sinapius, M. A Novel Approach: Combination of Automated Fiber Placement (AFP) and Additive Layer Manufacturing (ALM). J. Compos. Sci. 2018, 2, 42. [Google Scholar] [CrossRef]
- Velu, R.; Vaheed, N.M.; Venkatesan, C.; Raspall, F.; Krishnan, M. Experimental investigation on fabrication of thermoset prepreg composites using automated fibre placement process and 3D printed substrate. Procedia CIRP 2020, 85, 296–301. [Google Scholar] [CrossRef]
- Parandoush, P.; Tucker, L.; Zhou, C.; Lin, D. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater. Des. 2017, 131, 186–195. [Google Scholar] [CrossRef]
- Beijing FRP Research and Design Institute. Determination of Interlayer Shear Strength of Fiber Reinforced Plastics by Short Beam Method. In Industry Standard-Building Materials; JC/T 773-2010.2010-11-22; Beijing FRP Research and Design Institute: Beijing, China, 2010. [Google Scholar]
- Hao, L.; Yu, H. Analysis of the use of orthogonal experimental design table. Editor. J. 2005, 5, 334–335. [Google Scholar] [CrossRef]
Method | Focus | Reference |
---|---|---|
Filament winding | Fiber tension’s influence on mechanical performance of pressure vessel | [8] |
Winding pattern’s influence on mechanical performance | [9] | |
Mandrel shaft’s stress influence | [10] | |
Assembly core method for complex surface | [11] | |
Continuous Fiber 3D printing | Parameter optimization based on load | [17] |
Curve structure printing | [18] | |
Three-port printing head and different printing mode | [19] | |
Line width prediction model | [20] |
Level | Fiber Direction | Temperature | Thickness |
---|---|---|---|
1 | 0° | 225 °C | 0.5 mm |
2 | 90° | 245 °C | 1 mm |
Factor | Fiber Direction | Temperature | Thickness | ILSS (MPa) | |
---|---|---|---|---|---|
No | |||||
1 | 0° | 225 °C | 0.5 | 1.031 | |
2 | 0° | 245 °C | 1 | 0.663 | |
3 | 90° | 225 °C | 1 | 5.414 | |
4 | 90° | 245 °C | 0.5 | 6.694 | |
K1q | 0.847 | 3.223 | 3.863 | ||
K2q | 6.054 | 3.679 | 3.039 | ||
Rq | 5.207 | 0.456 | 0.842 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Chang, C.; Liu, J.; Tong, S.; Sun, S.; Han, Z.; Chen, Q.; Ran, X. A Novel Combining Method for Composite Groove Structure Fabrication. Crystals 2023, 13, 1644. https://doi.org/10.3390/cryst13121644
Huang S, Chang C, Liu J, Tong S, Sun S, Han Z, Chen Q, Ran X. A Novel Combining Method for Composite Groove Structure Fabrication. Crystals. 2023; 13(12):1644. https://doi.org/10.3390/cryst13121644
Chicago/Turabian StyleHuang, Shuhai, Cheng Chang, Jiaqi Liu, Shouwei Tong, Shouzheng Sun, Zhenyu Han, Qiang Chen, and Xudong Ran. 2023. "A Novel Combining Method for Composite Groove Structure Fabrication" Crystals 13, no. 12: 1644. https://doi.org/10.3390/cryst13121644
APA StyleHuang, S., Chang, C., Liu, J., Tong, S., Sun, S., Han, Z., Chen, Q., & Ran, X. (2023). A Novel Combining Method for Composite Groove Structure Fabrication. Crystals, 13(12), 1644. https://doi.org/10.3390/cryst13121644