Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. ZnO Nanopowder Synthesis
2.2. ZnO Nanopowder Characterization
2.3. Sensor Development
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, S.T.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.S.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Xu, X.; Yang, W.; Chen, J.; Fang, X. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Jacob, C. Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid State Electron. 2012, 73, 44–50. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Park, B.G.; Oh, J.E.; Kim, S.G.; Kim, M.D. Efficient Charge Separation in Polypyrrole/GaN-Nanorod-Based Hybrid Heterojunctions for High-Performance Self-Powered UV Photodetection. Phys. Status Solidi Rapid Res. Lett. 2021, 15, 2000518. [Google Scholar] [CrossRef]
- Tsay, C.Y.; Fan, K.S.; Lei, C.M. Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. J. Alloys Compd. 2012, 512, 216–222. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, M.; Nguyen, T.T.; Kim, J.; Yi, J. High-performing ultrafast transparent photodetector governed by the pyro–phototronic effect. Nanoscale 2018, 10, 6928–6935. [Google Scholar] [CrossRef]
- Castillo-Saenz, J.R.; Nedev, N.; Martinez-Guerra, E.; Valdez-Salas, B.; Mendivil-Palma, M.I.; Curiel-Alvarez, M.A.; Hernández-Como, N. Bias-stress instabilities in low-temperature thin-film transistors made of Al2O3 and ZnO films deposited by PEALD. Microelectron. Eng. 2022, 259, 111788. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nanomicro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, G.; Huang, W.; Wang, B.; Ke, W.; Logsdon, J.L.; Wang, H.; Wang, Z.; Zhu, W.; Yu, J.; et al. Combustion synthesized zinc oxide electron-transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900265. [Google Scholar] [CrossRef]
- Bica, B.O.; de Melo, J.V.S. Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2). Constr. Build. Mater. 2020, 252, 119120. [Google Scholar] [CrossRef]
- Georgiadou, D.G.; Semple, J.; Sagade, A.A.; Forstén, H.; Rantakari, P.; Lin, Y.H.; Alkhalil, F.; Seitkhan, A.; Loganathan, K.; Faber, H.; et al. 100 GHz zinc oxide Schottky diodes processed from solution on a wafer scale. Nat. Electron. 2020, 3, 718–725. [Google Scholar] [CrossRef]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef] [PubMed]
- Boruah, B.D. Zinc oxide ultraviolet photodetectors: Rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 2019, 1, 2059. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.B.; Rivelino, R.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Exploring 2D structures of indium oxide of different stoichiometry. CrystEngComm 2021, 23, 6661. [Google Scholar] [CrossRef]
- Ellmer, K. Magnetron sputtering of transparent conductive zinc oxide: Relation between the sputtering parameters and the electronic properties. J. Phys. D Appl. Phys. 2000, 33, R17–R32. [Google Scholar] [CrossRef]
- Villanueva, Y.Y.; Liu, D.R.; Cheng, P.T. Pulsed laser deposition of zinc oxide. Thin Solid Films 2006, 501, 366–369. [Google Scholar] [CrossRef]
- Waugh, M.R.; Hyett, G.; Parkin, I.P. Zinc oxide thin films grown by aerosol assisted CVD. Chem. Vap. Depos. 2008, 14, 366–372. [Google Scholar] [CrossRef]
- Castillo-Saenz, J.R.; Nedev, N.; Valdez-Salas, B.; Martinez-Puente, M.A.; Aguirre-Tostado, F.S.; Mendivil-Palma, M.I.; Mateos, D.; Curiel-Álvarez, M.A.; Pérez-Landeros, O.; Martinez-Guerra, E. Growth of ZnO thin films at low temperature by plasma enhanced atomic layer deposition using H2O and O2 plasma oxidants. J. Mater. Sci. Mater. Electron. 2021, 32, 20274–20283. [Google Scholar] [CrossRef]
- Mohan, S.; Vellakkat, M.; Aravind, A.; Reka, U. Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express 2020, 1, 030028. [Google Scholar] [CrossRef]
- Van Embden, J.; Gross, S.; Kittilstved, K.R.; Della Gaspera, E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem. Rev. 2023, 123, 271–326. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape controlled crystal growth. RSC Adv. 2019, 9, 14638. [Google Scholar] [CrossRef] [PubMed]
- Uribe-López, M.C.; Hidalgo-López, M.C.; López-González, R.; Frías-Márquez, D.M.; Núñez-Nogueira, G.; Hernández-Castillo, D.; Alvarez-Lemus, M.A. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J. Photochem. Photobiol. A Chem. 2021, 404, 112866. [Google Scholar] [CrossRef]
- Belhaj, M.; Dridi, C.; Yatskiv, R.; Grym, J. The improvement of UV photodetection based on polymer/ZnO nanorod heterojunctions. Org. Electron. 2020, 77, 105545. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Li, D.; Chen, P.; Pi, L.; Zhou, X.; Zhai, T. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106. [Google Scholar] [CrossRef]
- Jun, J.H.; Seong, H.; Cho, K.; Moon, B.M.; Kim, S. Ultraviolet photodetectors based on ZnO nanoparticles. Ceram. Int. 2009, 35, 2797–2801. [Google Scholar] [CrossRef]
- Dobrzynska, J.A.; Gijs, M.A. Flexible polyimide-based force sensor. Sens. Actuators A Phys. 2012, 173, 127–135. [Google Scholar] [CrossRef]
- Deng, W.; Jin, L.; Zhang, B.; Chen, Y.; Mao, L.; Zhang, H.; Yang, W. A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale 2016, 8, 16302–16306. [Google Scholar] [CrossRef]
- Domínguez, M.A.; Sosa-Sánchez, J.L. Copper phthalocyanine buffer interlayer film incorporated in paper substrates for printed circuit boards and dielectric applications in flexible electronics. Solid State Electron. 2020, 172, 107898. [Google Scholar] [CrossRef]
- MacDonald, W.A.; Looney, M.K.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest advances in substrates for flexible electronics. In Large Area and Flexible Electronics; Wiley: Hoboken, NJ, USA, 2015; pp. 291–314. [Google Scholar]
- Albiss, B.A.; AL-Akhras, M.A.; Obaidat, I. Ultraviolet photodetector based on ZnO nanorods grown on a flexible PDMS substrate. Int. J. Environ. Anal. Chem. 2015, 95, 339–348. [Google Scholar] [CrossRef]
- Qin, L.; Mawignon, F.J.; Hussain, M.; Ange, N.K.; Lu, S.; Hafezi, M.; Dong, G. Economic friendly ZnO-based UV sensors using hydrothermal growth: A review. Materials 2021, 14, 4083. [Google Scholar] [CrossRef]
- Preethi, S.; Abarna, K.; Nithyasri, M.; Kishore, P.; Deepika, K.; Ranjithkumar, R.; Bhuvaneshwari, V.; Bharathi, D. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int. J. Biol. Macromol. 2020, 164, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Patrycja, M.; Michal, P.; Wojciech, M. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar]
- Arias, A.; Nedev, N.; Ghose, S.; Rojas-Ramirez, J.S.; Mateos, D.; Curiel Alvarez, M.; Droopad, R. Structural, optical, and electrical characterization of β-Ga2O3 thin films grown by plasma-assisted molecular beam epitaxy suitable for UV Sensing. Adv. Mater. Sci. Eng. 2018, 2018, 9450157. [Google Scholar] [CrossRef]
2θ (°) | FWHM | (hkl) | Crystallite Size (nm) |
---|---|---|---|
34.39 | 0.387 | (002) | ~21.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munguía-Fernández, N.A.; Castillo-Saenz, J.R.; Perez-Landeros, O.M.; Nedev, R.; Mateos, D.; Paz, J.; Suárez, M.; Curiel-Alvarez, M.A.; Nedev, N.; Arias, A. Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder. Crystals 2023, 13, 1672. https://doi.org/10.3390/cryst13121672
Munguía-Fernández NA, Castillo-Saenz JR, Perez-Landeros OM, Nedev R, Mateos D, Paz J, Suárez M, Curiel-Alvarez MA, Nedev N, Arias A. Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder. Crystals. 2023; 13(12):1672. https://doi.org/10.3390/cryst13121672
Chicago/Turabian StyleMunguía-Fernández, Nicol Alejandra, Jhonathan Rafael Castillo-Saenz, Oscar Manuel Perez-Landeros, Roumen Nedev, David Mateos, Judith Paz, Mariel Suárez, Mario Alberto Curiel-Alvarez, Nicola Nedev, and Abraham Arias. 2023. "Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder" Crystals 13, no. 12: 1672. https://doi.org/10.3390/cryst13121672
APA StyleMunguía-Fernández, N. A., Castillo-Saenz, J. R., Perez-Landeros, O. M., Nedev, R., Mateos, D., Paz, J., Suárez, M., Curiel-Alvarez, M. A., Nedev, N., & Arias, A. (2023). Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder. Crystals, 13(12), 1672. https://doi.org/10.3390/cryst13121672