Defective Graphene Effects on Primary Displacement Damage and He Diffusion at a Ni–Graphene Interface: Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Simulation Methodology
2.1. Displacement Cascade Simulations
2.2. He Diffusion Simulations
3. Results and Discussion
3.1. Defective Graphene’s Effect on Displacement Damage
3.2. Defective Graphene’s Effect on He Diffusion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation damage tolerant nanomaterials. Mater. Today 2013, 16, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Zinkle, S.J.; Snead, L.L. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Parish, C.M.; Wang, K.; Edmondson, P.D. Nanoscale chemistry and crystallography are both the obstacle and pathway to advanced radiation-tolerant materials. Scr. Mater. 2018, 143, 169–175. [Google Scholar] [CrossRef]
- Zhang, X.; Hattar, K.; Chen, Y.; Shao, L.; Li, L.; Sun, C.; Yu, K.; Li, N.; Taheri, M.L.; Wang, H.; et al. Radiation damage in nanostructured materials. Prog. Mater. Sci. 2018, 96, 217–321. [Google Scholar] [CrossRef]
- Nathaniel, J.E., II; Suri, P.K.; Hopkins, E.M.; Wen, J.; Baldo, P.; Kirk, M.; Taheri, M.L. Grain boundary strain as a determinant of localized sink efficiency. Acta Mater. 2022, 226, 117624. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, G.; Zhai, W.; Ai, Q.; Feng, J.; Zhang, L.; Si, P.; Ci, L. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. J. Alloy. Compd. 2018, 748, 854–860. [Google Scholar] [CrossRef]
- Wan, Z.; Li, J.; Yang, D.; Hou, S. Microstructural and mechanical properties characterization of graphene oxide-reinforced Ti-matrix composites. Coatings 2022, 12, 120. [Google Scholar] [CrossRef]
- Baiocco, G.; Genna, S.; Menna, E.; Ucciardello, N. Study on pulse-reverse electroplating process for the manufacturing of a graphene-based coating. Materials 2023, 16, 854. [Google Scholar] [CrossRef]
- Chang, S.; Du, W.; Zhao, Z.; Bai, P. Microstructure and high temperature-mechanical properties of TiC/graphene/Ti6Al4V composite formed by laser powder bed fusion. Metals 2023, 13, 163. [Google Scholar] [CrossRef]
- Safina, L.R.; Rozhnova, E.A.; Murzaev, R.T.; Baimova, J.A. Effect of interatomic potential on simulation of fracture behavior of Cu/graphene composite: A molecular dynamics study. Appl. Sci. 2023, 13, 916. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, R.; Xu, Q.; Sun, W.; Fu, Y.; Wu, M.; Liu, K. Fabrication of Cu/Al/Cu laminated composites reinforced with graphene by hot pressing and evaluation of their electrical conductivity. Materials 2023, 16, 622. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, P.V.C.; Gueorguiev, G.K.; Stafström, S. Bonding, charge rearrangement and interface dipoles of benzene, graphene, and PAH molecules on Au (1 1 1) and Cu (1 1 1). Carbon 2015, 81, 620–628. [Google Scholar] [CrossRef]
- Kim, Y.; Baek, J.; Kim, S.; Kim, S.; Ryu, S.; Jeon, S.; Han, S.M. Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep. 2016, 6, 24785. [Google Scholar] [CrossRef] [Green Version]
- Si, S.; Li, W.; Zhao, X.; Han, M.; Yue, Y.; Wu, W.; Guo, S.; Zhang, X.; Dai, Z.; Wang, X.; et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene. Adv. Mater. 2017, 29, 1604623. [Google Scholar] [CrossRef]
- Yang, T.; Yang, L.; Liu, H.; Zhou, H.; Peng, S.; Zhou, X.; Gao, F.; Zu, X. Ab initio study of stability and migration of point defects in copper-graphene layered composite. J. Alloy. Compd. 2017, 692, 49–58. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Y.; Guo, Q.; Zhang, J.; Li, Z.; Xiong, D.; Li, X.; Zhang, D. Bulk nanolaminated graphene (reduced graphene oxide)–aluminum composite tolerant of radiation damage. Acta Mater. 2020, 196, 17–29. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, P.; Wang, F. Graphene distribution and structural integrity dependent irradiation resistance of graphene/tungsten composites. Mater. Today Commun. 2022, 31, 103365. [Google Scholar] [CrossRef]
- Yang, K.; Li, Q.; Zhang, Q.; Liu, G.; Wang, J.; Yang, Y.; Guo, C.; Ni, J.; Song, J.; Zhang, J.; et al. Synergistically enhanced interface stability by graphene assisted copper surface reconstruction. Acta Mater. 2022, 226, 117638. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Chen, F.; Gao, F.; Peng, Q.; Ji, L.; Sun, X. Self-healing mechanism of irradiation defects in nickel–graphene nanocomposite: An energetic and kinetic perspective. J. Alloy. Compd. 2018, 765, 253–263. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Gao, F.; Chen, F.; Ge, G.; Yan, Y.; Peng, Q. Release of helium-related clusters through a nickel–graphene interface: An atomistic study. Appl. Surf. Sci. 2019, 487, 218–227. [Google Scholar] [CrossRef]
- Liu, S.; Xie, L.; Peng, Q.; Li, R. Carbon nanotubes enhance the radiation resistance of bcc iron revealed by atomistic study. Materials 2019, 12, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chant, I.; Murty, K.L. Structural materials issues for the next generation fission reactors. JOM 2010, 62, 67–74. [Google Scholar] [CrossRef]
- Yvon, P.; Le Flem, M.; Cabet, C.; Seran, J.L. Structural materials for next generation nuclear systems: Challenges and the path forward. Nucl. Eng. Des. 2015, 294, 161–169. [Google Scholar] [CrossRef]
- Stopher, M.A. The effects of neutron radiation on nickel-based alloys. Mater. Sci. Technol. 2017, 33, 518–536. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 2008, 383, 189–195. [Google Scholar] [CrossRef]
- Rowcliffe, A.F.; Mansur, L.K.; Hoelzer, D.T.; Nanstad, R.K. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater. 2009, 392, 341–352. [Google Scholar] [CrossRef]
- Patel, N.S.; Pavlík, V.; Boča, M. High-temperature corrosion behavior of superalloys in molten salts—A review. Crit. Rev. Solid State Mater. Sci. 2017, 42, 83–97. [Google Scholar] [CrossRef]
- Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 2009, 385, 217–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.; Weber, W.J.; Nordlund, K.; Granberg, F.; Djurabekova, F. Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 2017, 21, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Luneville, L.; Sublet, J.C.; Simeone, D. Impact of nuclear transmutations on the primary damage production: The example of Ni based steels. J. Nucl. Mater. 2018, 505, 262–266. [Google Scholar] [CrossRef]
- Li, N.; Demkowicz, M.; Mara, N.; Wang, Y.; Misra, A. Hardening due to interfacial He bubbles in nanolayered composites. Mater. Res. Lett. 2016, 4, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Holmes, R.; Hanley, T.; Davis, J.; Short, K.; Edwardset, L. Effects of bubbles on high-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt. Corros. Sci. 2017, 125, 184–193. [Google Scholar] [CrossRef]
- Xing, Q.; Zhu, X.; Li, G.; Zhang, X.; Zhang, X.; Chen, Z. Microstructure and mechanical properties of Ni-based complex concentrated alloys under radiation environment. Crystals 2022, 12, 1322. [Google Scholar] [CrossRef]
- Xu, A.; Saleh, M.; Wei, T.; Palmer, T.; Huang, H.; Bhattacharyya, D. Investigating the effect of helium ion irradiation on deformation behaviour of Ni-Mo-Cr alloy via in-situ micro-tensile testing. J. Nucl. Mater. 2022, 567, 153812. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Chen, F.; Liu, J.; Sun, X.; Ji, L. Radiation tolerance of nickel–graphene nanocomposite with disordered graphene. J. Nucl. Mater. 2018, 510, 1–9. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Meyer, J.C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaprakash, G.K. Pre-post redox electron transfer regioselectivity at the alanine modified nano graphene electrode interface. Chem. Phys. Lett. 2022, 789, 139295. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Casillas, N.; Astudillo-Sánchez, P.D.; Flores-Moreno, R. Role of defects on regioselectivity of nano pristine graphene. J. Phys. Chem. A 2016, 120, 9101–9108. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Giannazzo, F.; Nicotra, G.; Cora, I.; Gueorguiev, G.K.; Persson, P.O.Å.; Pécz, B. Material proposal for 2D indium oxide. Appl. Surf. Sci. 2021, 548, 149275. [Google Scholar] [CrossRef]
- Pavithra, C.L.P.; Sarada, B.V.; Rajulapati, K.V.; Rao, T.N.; Sundararajan, G. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness. Sci. Rep. 2014, 4, 4049. [Google Scholar] [CrossRef]
- Ahmad, W.; Ullah, Z.; Sonil, N.I.; Khan, K. Introduction, production, characterization and applications of defects in graphene. J. Mater. Sci. Mater. Electron. 2021, 32, 19991–20030. [Google Scholar] [CrossRef]
- Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A.V.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Zhang, L.; Li, H.; Liu, L. Nanopore creation in graphene by ion beam irradiation: Geometry, quality, and efficiency. ACS Appl. Mater. Interfaces 2016, 8, 24803–24809. [Google Scholar] [CrossRef] [PubMed]
- Vinchon, P.; Glad, X.; Bigras, G.R.; Martel, R.; Stafford, L. Preferential self-healing at grain boundaries in plasma-treated graphene. Nat. Mater. 2021, 20, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tang, X.; Xie, K.; Peng, Q. Enhanced self-healing of irradiation defects near a Ni–graphene interface by damaged graphene: Insights from atomistic modeling. J. Phys. Chem. Solids 2021, 151, 109909. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Bonny, G.; Castin, N.; Terentyev, D. Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 2013, 21, 085004. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.P.; Mainardi, D.S.; Balbuena, P.B. Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf. Sci. 2003, 545, 163–179. [Google Scholar] [CrossRef]
- Tuzun, R.E.; Noid, D.W.; Sumpter, B.G.; Merkle, R.C. Dynamics of flow inside carbon nanotubes. Nanotechnology 1997, 8, 112. [Google Scholar] [CrossRef]
- Jin, E.; Du, S.; Li, M.; Liu, C.; He, S.; He, J.; He, H. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite. J. Nucl. Mater. 2016, 479, 504–514. [Google Scholar] [CrossRef]
- Torres, E.; Judge, C.; Rajakumar, H.; Korinek, A.; Pencer, J.; Bickel, G. Atomistic simulations and experimental measurements of helium nano-bubbles in nickel. J. Nucl. Mater. 2017, 495, 475–483. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Luo, S. Molecular dynamics simulations of displacement cascades in nanotwinned Cu. Comput. Mater. Sci. 2018, 152, 38–42. [Google Scholar] [CrossRef]
- Singh, B.N.; Golubov, S.I.; Trinkaus, H.; Edwards, D.J.; Eldrup, M. Evolution of stacking fault tetrahedra and its role in defect accumulation under cascade damage conditions. J. Nucl. Mater. 2004, 328, 77–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Yuan, X.; Ge, X.; Peng, Q. Defective Graphene Effects on Primary Displacement Damage and He Diffusion at a Ni–Graphene Interface: Molecular Dynamics Simulations. Crystals 2023, 13, 198. https://doi.org/10.3390/cryst13020198
Huang H, Yuan X, Ge X, Peng Q. Defective Graphene Effects on Primary Displacement Damage and He Diffusion at a Ni–Graphene Interface: Molecular Dynamics Simulations. Crystals. 2023; 13(2):198. https://doi.org/10.3390/cryst13020198
Chicago/Turabian StyleHuang, Hai, Xiaoting Yuan, Xiaoxin Ge, and Qing Peng. 2023. "Defective Graphene Effects on Primary Displacement Damage and He Diffusion at a Ni–Graphene Interface: Molecular Dynamics Simulations" Crystals 13, no. 2: 198. https://doi.org/10.3390/cryst13020198
APA StyleHuang, H., Yuan, X., Ge, X., & Peng, Q. (2023). Defective Graphene Effects on Primary Displacement Damage and He Diffusion at a Ni–Graphene Interface: Molecular Dynamics Simulations. Crystals, 13(2), 198. https://doi.org/10.3390/cryst13020198