980 MPa Grade Low-Alloy Carbide-Free Bainitic Steel Obtained by Dynamic Continuous Cooling Transformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of the Cooling Rate on the Microstructure Evolution
3.2. The Relationship between the Microstructure and Mechanical Properties
4. Conclusions
- (1)
- The microstructure of the studied carbide-free bainitic steels consists of allotriomorphic ferrite, bainitic ferrite, plate-retained austenite, and blocky retained austenite (M/A). With the cooling rate decreasing, the thickness of the bainitic ferrite plate was reduced, which was caused by the carbon diffusion, thus strengthening the austenite. The greatest amount of austenite of 27.8 ± 0.36 vol.% was retained in sample BS60, whereas sample BS30 had the greatest martensite fraction of 15.9 vol.%.
- (2)
- Sample BS30 has poor ductility due to the existence of a large fraction of martensite. With the significant TRIP effect in sample BS60 and the thinnest bainitic ferrite plate in sample BS120, a greater work-hardening capability was achieved in the two samples. Consequently, they exhibit a good strength–ductility match with the PSE, up to 30GPa·%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhadeshia, H.K.D.H.; Edmonds, D.V. Bainite in silicon steels: New composition-property approach Part1. Metal Sci. 1983, 17, 411–419. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very strong bainite. Curr. Opin. Solid State Mater. Sci. 2004, 8, 251–257. [Google Scholar]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Mechanical Properties of Low-Temperature Bainite. Mater. Sci. Forum 2005, 500–501, 495–502. [Google Scholar]
- Hase, K.; Garcia-Mateo, C.; Bhadeshia, H.K.D.H. Bimodal size-distribution of bainite plates. Mater. Sci. Eng. A 2006, 438–440, 145–148. [Google Scholar]
- Bhadeshia, H.K.D.H. Nanostructured bainite. Proc. R. Soc. A 2010, 466, 3–18. [Google Scholar]
- Timokhina, I.B.; Beladi, H.; Xiong, X.Y.; Adachi, Y.; Hodgson, P.D. Nanoscale microstructural characterization of a nanobainitic steel. Acta Mater. 2011, 14, 5511–5522. [Google Scholar]
- Hu, F.; Hodgson, P.D.; Wu, K.M. Acceleration of the super bainite transformation through a coarse austenite grain size. Mater. Lett. 2014, 122, 240–243. [Google Scholar]
- Garcia-Mateo, C.; Caballero, F.G. Ultra high strength Bainitic Steels. ISIJ Int. 2003, 43, 1736–1740. [Google Scholar]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Acceleration of Low-temperature Bainite. ISIJ Int. 2003, 43, 1821–1825. [Google Scholar]
- Yang, H.S.; Bhadeshia, H.K.D.H. Designing low carbon, low temperature bainite. Mater. Sci. Technol. 2008, 24, 335–342. [Google Scholar]
- Caballero, F.G.; Santofimia, M.J.; Capdevila, C.; Garcia-Mateo, C.; Andres, C.G. Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and T0 Curves. ISIJ Int. 2006, 46, 1479–1488. [Google Scholar]
- Caballero, F.G.; Allain, S.; Cornide, J.; Puerta Velasquez, J.D.; Garcia-Mateo, C.; Miller, M.K. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Mater. Des. 2013, 49, 667–680. [Google Scholar]
- Caballero, F.G.; Bhadeshia, H.K.D.H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Design of novel high strength bainitic steels: Part 1. Mater. Sci. Technol. 2001, 17, 512–516. [Google Scholar]
- Caballero, F.G.; Bhadeshia, H.K.D.H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Design of novel high strength bainitic steels: Part 2. Mater. Sci. Technol. 2001, 17, 517–522. [Google Scholar]
- Chen, S.; Wang, C.; Shan, L.; Zhao, X.; Xu, W. Effect of isothermal time and alloy elements on bainitic transformation below Ms in medium Mn Steels. IOP Conf. Ser. Mater. Sci. Eng. 2019, 592, 012018. [Google Scholar]
- Yang, Z.N.; Chu, C.H.; Jiang, F.; Qin, Y.M.; Long, X.Y.; Wang, S.L.; Chen, D.; Zhang, F.C. Accelerating nano-bainite transformation based on a new constructed microstructural predicting model. Mater. Sci. Eng. A 2019, 748, 16–20. [Google Scholar]
- Chen, X.; Wang, F.M.; Li, C.R.; Zhang, J. Dynamic continuous cooling transformation, microstructure and mechanical properties of medium-carbon carbide-free bainitic steel. High Temp. Mat. Process. 2020, 39, 304–316. [Google Scholar]
- Ohtsuka, H. Effects of a High Magnetic Field on Bainitic and Martensitic Transformations in Steels. Mater. Trans. 2007, 48, 2851–2854. [Google Scholar] [CrossRef] [Green Version]
- Sista, V.; Nash, P.; Sahay, S.S. Accelerated bainitic transformation during cyclic austempering. J. Mater. Sci. 2007, 42, 9112–9115. [Google Scholar]
- Toji, Y.; Matsuda, H.; Raabe, D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite. Acta Mater. 2016, 116, 250–262. [Google Scholar]
- Santofimia, M.J.; van Bohemen, S.M.C.; Sietsma, J. Combining bainite and martensite in steel microstructures for light weight applications. J. S. Afr. Inst. Min. Metall. 2013, 113, 143–148. [Google Scholar]
- Zhuang, W.C.; Jiang, Y.M.; Zhou, W.T.; Liang, Z.Y.; Northwood, D.O.; Liu, C. Influence of Multi-Step Austempering Temperature on Tensile Performance of Unalloyed Ductile Iron. Key Eng. Mater. 2019, 803, 3–7. [Google Scholar]
- Avishan, B.; Tavakolian, M.; Yazdani, S. Two-step austempering of high performance steel with nanoscale microstructure. Mater. Sci. Eng. A 2017, 693, 178–185. [Google Scholar]
- Mousalou, H.; Yazdani, S.; Avishan, B.; Ahmadi, N.P.; Chabok, A.; Pei, Y.T. Microstructural and mechanical properties of low-carbon ultra-fine bainitic steel produced by multi-step austempering process. Mater. Sci. Eng. A 2018, 734, 329–337. [Google Scholar]
- Gao, G.H.; Guo, H.R.; Gui, X.L.; Tan, Z.L.; Bai, B.Z. Inverted multi-step bainitic austempering process routes: Enhanced strength and ductility. Mater. Sci. Eng. A 2018, 736, 298–305. [Google Scholar]
- Ostash, O.P.; Kulyk, V.V.; Poznyakov, V.D.; Gaivorons’kyi, O.A.; Vira, V.V. Influence of the modes of heat treatment on the strength and cyclic crack-growth resistance of 65G steel. Mater. Sci. 2019, 54, 776–782. [Google Scholar]
- Lia, S.C.; Guo, C.Y.; Hao, L.L.; Kang, Y.L.; An, Y.G. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests. Mater. Sci. Eng. A 2019, 795, 624–632. [Google Scholar]
- Wang, T.L.; Qian, L.H.; Yu, W.L.; Li, K.F.; Zhang, F.C.; Meng, J.Y. Effect of ferrite-austenite morphology and orientation relationship on bainite transformation in low-alloy TRIP steels. Mater. Charact. 2022, 184, 111656. [Google Scholar]
- Garcia-Mateo, C.; Jimenez, J.A.; Lopez-Ezquerra, B.; Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; Caballero, F.G. Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Mater Charact. 2016, 122, 83–89. [Google Scholar]
- Sugimoto, K.I.; Usui, N.; Kobayashi, M.; Hashimoto, S.I. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int. 1992, 32, 1311–1318. [Google Scholar]
- Cheng, L.; Bottger, A.; de Keijser, T.H.; Mittemeijer, E.J. Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites. Scr. Metall. Mater. 1990, 24, 509–514. [Google Scholar]
- Bhadeshia, H.K.D.H.; Edmonds, D.V. The mechanism of bainite formation in steels. Acta Mater. 1980, 28, 1265–1273. [Google Scholar]
- Zhou, M.; Xu, G.; Tian, J.; Hu, H.; Yuan, Q. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition. Metals 2017, 7, 263. [Google Scholar]
- Franceschi, M.; Miotti Bettanini, A.; Pezzato, L.; Dabalà, M.; Jacques, P.J. Effect of Multi-Step Austempering Treatment on the Microstructure and Mechanical Properties of a High Silicon Carbide-Free Bainitic Steel with Bimodal Bainite Distribution. Metals 2021, 11, 2055. [Google Scholar] [CrossRef]
- Jacques, P.J.; Furnémont, Q.; Pardoen, T.; Delannay, F. On the role of martensitic transformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater. 2001, 49, 139–152. [Google Scholar]
- Fonstein, N. Advanced High Strength Sheet Steel; Springer International Publishing: Cham, Switzerland, 2015; pp. 12–13. [Google Scholar]
- Paravicini Bagliani, E.; Santofimia, M.J.; Zhao, L.; Sietsma, J.; Anelli, E. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Mater. Sci. Eng. A 2013, 599, 486–495. [Google Scholar]
- Badkoobeh, F.; Mostaan, H.; Rafiei, M.; Bakhsheshi-Rad, H.R.; Berto, F. Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review. Metal 2022, 12, 101. [Google Scholar]
- Liu, L.T.; Fu, B.; Guo, Y.H.; Wei, L.Q. Simultaneous Improvement of Strength and Ductility of Dual-Phase Steel Processed by Multi-Step Cyclic Rolling and Intercritical Annealing. Materials 2022, 15, 6424. [Google Scholar]
- Zurnadzhy, V.; Efremenko, V.; Petryshynets, I.; Dabalà, M.; Franceschi, M.; Wu, K.M.; Ková, F.; Chabak, Y.; Viktor Puchy, V.; Brykov, M. Alternative Approach for the Intercritical Annealing of (Cr, Mo, V)-Alloyed TRIP-Assisted Steel before Austempering. Metals 2022, 12, 1814. [Google Scholar]
- Guzmán, A.; Monsalve, A. Effect of Bainitic Isothermal Treatment on the Microstructure and Mechanical Properties of a CMnSiAl TRIP Steel. Metals 2022, 12, 655. [Google Scholar]
- Xiao, H.; Zhao, G.; Xu, D.M.; Cheng, Y.Y.; Bao, S.Q. Effect of Microstructure Morphology of Q&P Steel on Carbon and Manganese Partitioning and Stability of Retained Austenite. Metals 2022, 12, 1613. [Google Scholar]
- Santofimia, M.J.; Nguyen-Minhb, T.; Zhao, L.; Petrov, R.; Sabirov, I.; Sietsma, J. New low carbon Q&P steels containing film-like intercritical ferrite. Mater. Sci. Eng. A 2010, 527, 6429–6439. [Google Scholar]
- Zhao, F.Y.; Chen, P.; Xu, B.Y.; Yu, Q.; Wang, G.D.; Yi, H.L. A carbide-free bainitic steel with high-ductility by dynamic transformation during coiling process. Mater. Sci. Technol. 2020, 36, 1704–1711. [Google Scholar]
Elements | C | Mn | Al | Si | Nb | Ti | Fe |
---|---|---|---|---|---|---|---|
Mass fraction | 0.48 | 1.52 | 1.23 | 1.0 | 0.03 | 0.06 | Balance |
XRD | EBSD | |||
---|---|---|---|---|
Volume Fraction of Retained Austenite/% | Carbon Content/% | Volume Fraction of Retained Austenite/% | Volume Fraction of Martensite in all Phases/% | |
BS30 | 11.5 ± 0.78 | 1.36 ± 0.04 | 9.4 | 35.1 |
BS60 | 27.8 ± 0.36 | 1.46 ± 0.02 | 21.0 | 25.8 |
BS120 | 12.9 ± 1.31 | 1.68 ± 0.04 | 10.5 | 23.9 |
Samples | Yield Strength/MPa | Tensile Strength/MPa | Total Elongation/% | PSE/GPa·% |
---|---|---|---|---|
BS30 | 851 ± 3 | 1034 ± 8 | 12.9 ± 2.2 | 13.4 |
BS60 | 754 ± 3 | 1087 ± 3 | 27.6 ± 0.3 | 30.0 |
BS120 | 756 ± 4 | 1087 ± 9 | 27.8 ± 0.6 | 30.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Chen, P.; Yang, D.; Wang, T.; Yi, H. 980 MPa Grade Low-Alloy Carbide-Free Bainitic Steel Obtained by Dynamic Continuous Cooling Transformation. Crystals 2023, 13, 213. https://doi.org/10.3390/cryst13020213
Wang P, Chen P, Yang D, Wang T, Yi H. 980 MPa Grade Low-Alloy Carbide-Free Bainitic Steel Obtained by Dynamic Continuous Cooling Transformation. Crystals. 2023; 13(2):213. https://doi.org/10.3390/cryst13020213
Chicago/Turabian StyleWang, Pengfei, Peng Chen, Dapeng Yang, Tao Wang, and Hongliang Yi. 2023. "980 MPa Grade Low-Alloy Carbide-Free Bainitic Steel Obtained by Dynamic Continuous Cooling Transformation" Crystals 13, no. 2: 213. https://doi.org/10.3390/cryst13020213
APA StyleWang, P., Chen, P., Yang, D., Wang, T., & Yi, H. (2023). 980 MPa Grade Low-Alloy Carbide-Free Bainitic Steel Obtained by Dynamic Continuous Cooling Transformation. Crystals, 13(2), 213. https://doi.org/10.3390/cryst13020213